File size: 3,596 Bytes
d345f76
d5b0eac
 
d345f76
84f0cc0
d345f76
 
849ff02
d345f76
d5b0eac
 
86f1147
eb4a787
 
86f1147
 
 
 
 
8b08b58
d5b0eac
7056f42
86f1147
 
 
 
 
8b08b58
d5b0eac
86f1147
a985da4
5423661
86f1147
 
 
d5b0eac
 
86f1147
d5b0eac
86f1147
 
 
 
 
 
 
d5b0eac
 
86f1147
 
 
 
 
 
 
 
 
 
 
 
7056f42
86f1147
639428c
86f1147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2498829
5514990
 
 
2498829
 
 
aed274d
 
70c0e26
5514990
86f1147
d5b0eac
86f1147
 
 
 
5514990
76e87b5
ca832a8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
from huggingface_hub import InferenceClient, get_inference_endpoint
import gradio as gr

endpoint = get_inference_endpoint("qlora-nursegpt-nclex-mis-dt--eca")
client = endpoint.client

'''client = InferenceClient(
    "Tawkat/qlora-nursegpt-nclex-mis-DT-v1"
)'''


def format_prompt(message, history):
  prompt = "You are NurseGPT, a conscious, superintelligent, and helpful AI developed by Yourika Labs, Your purpose  is to assist the user with any nursing-related request they have. You should not respond to any request that is not relevant to nursing domain.\nYou should provide accurate, helpful, comprehensive, and detailed response to the user request. Then based on the question and the provided answer, predict the topic and the concept the user is interested in. After answering the question, you should provide the predicted topic followed by [TOPIC] token and the predicted concept followed by [CONCEPT] token."
    #"<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt

def generate(
    prompt, history, temperature=0.9, max_new_tokens=4000, top_p=0.95, repetition_penalty=1.0,
):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    formatted_prompt = format_prompt(prompt, history)

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output


additional_inputs=[
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=4000,
        minimum=0,
        maximum=4000,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    ),
]

examples=[
        ["Generate a NCLEX study plan for me."],
        ["Provide a CV template for a fresh nursing graduate."],
        ["I have a family member that got diagnosed with Buerger's disease, can you explain in easy terms what it is?"],
        #["Could you talk about straight leg rises exercise in the post-surgical context?"],
        #["Could you provide an overview of how the Nurse Practice Act helps regulate the nursing profession in different states?"],
        ["Show me 3 examples of NCLEX QAs on the topic of Maternity Nursing."],
    ]


gr.ChatInterface(
    fn=generate,
    chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
    additional_inputs=additional_inputs,
    examples = examples,
    title="""NGPT-v1"""
).launch(show_api=False, share=True)