Qwen-Audio-Chat / app.py
Tonic's picture
Update app.py
3948c4b
raw
history blame
6.53 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import os
import copy
import re
import secrets
from pathlib import Path
from pydub import AudioSegment
# Initialize the model and tokenizer
torch.manual_seed(420)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-Audio-Chat", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio-Chat", device_map="cuda", trust_remote_code=True).eval()
def _parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f"<br></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "&lt;")
line = line.replace(">", "&gt;")
line = line.replace(" ", "&nbsp;")
line = line.replace("*", "&ast;")
line = line.replace("_", "&lowbar;")
line = line.replace("-", "&#45;")
line = line.replace(".", "&#46;")
line = line.replace("!", "&#33;")
line = line.replace("(", "&#40;")
line = line.replace(")", "&#41;")
line = line.replace("$", "&#36;")
lines[i] = "<br>" + line
text = "".join(lines)
return text
def predict(_chatbot, task_history, user_input):
print("Predict - Start: task_history =", task_history)
if not isinstance(task_history, list) or not all(isinstance(item, tuple) and len(item) == 2 for item in task_history):
print("Error: task_history should be a list of tuples of length 2.")
return _chatbot
query = user_input if user_input else (task_history[-1][0] if task_history else "")
print("User: " + _parse_text(query))
if not task_history:
return _chatbot
history_cp = copy.deepcopy(task_history)
history_filter = []
audio_idx = 1
pre = ""
last_audio = None
for item in history_cp:
q, a = item
if isinstance(q, (tuple, list)):
last_audio = q[0]
q = f'Audio {audio_idx}: <audio>{q[0]}</audio>'
pre += q + '\n'
audio_idx += 1
else:
pre += q
history_filter.append((pre, a))
pre = ""
if not history_filter:
return _chatbot
history, message = history_filter[:-1], history_filter[-1][0]
response, history = model.chat(tokenizer, message, history=history)
ts_pattern = r"<\|\d{1,2}\.\d+\|>"
all_time_stamps = re.findall(ts_pattern, response)
if (len(all_time_stamps) > 0) and (len(all_time_stamps) % 2 ==0) and last_audio:
ts_float = [ float(t.replace("<|","").replace("|>","")) for t in all_time_stamps]
ts_float_pair = [ts_float[i:i + 2] for i in range(0,len(all_time_stamps),2)]
# θ―»ε–ιŸ³ι’‘ζ–‡δ»Ά
format = os.path.splitext(last_audio)[-1].replace(".","")
audio_file = AudioSegment.from_file(last_audio, format=format)
chat_response_t = response.replace("<|", "").replace("|>", "")
chat_response = chat_response_t
temp_dir = secrets.token_hex(20)
temp_dir = Path(uploaded_file_dir) / temp_dir
temp_dir.mkdir(exist_ok=True, parents=True)
# ζˆͺε–ιŸ³ι’‘ζ–‡δ»Ά
for pair in ts_float_pair:
audio_clip = audio_file[pair[0] * 1000: pair[1] * 1000]
# δΏε­˜ιŸ³ι’‘ζ–‡δ»Ά
name = f"tmp{secrets.token_hex(5)}.{format}"
filename = temp_dir / name
audio_clip.export(filename, format=format)
_chatbot[-1] = (_parse_text(query), chat_response)
_chatbot.append((None, (str(filename),)))
if not _chatbot:
_chatbot = [("", "")]
print("Predict - End: task_history =", task_history)
return _chatbot[-1][1], _chatbot
def regenerate(_chatbot, task_history):
print("Regenerate - Start: task_history =", task_history)
if not task_history:
return _chatbot
item = task_history[-1]
if item[1] is None:
return _chatbot
task_history[-1] = (item[0], None)
chatbot_item = _chatbot.pop(-1)
if chatbot_item[0] is None:
_chatbot[-1] = (_chatbot[-1][0], None)
else:
_chatbot.append((chatbot_item[0], None))
print("Regenerate - End: task_history =", task_history)
return predict(_chatbot, task_history)
def add_text(history, task_history, text):
print("Add Text - Before: task_history =", task_history)
if not isinstance(task_history, list):
task_history = []
history.append((_parse_text(text), None))
task_history.append((text, None))
print("Add Text - After: task_history =", task_history)
return history, task_history
def add_file(history, task_history, file):
print("Add File - Before: task_history =", task_history)
history.append(((file.name,), None))
task_history.append(((file.name,), None))
print("Add File - After: task_history =", task_history)
return history, task_history
def add_mic(history, task_history, file):
print("Add Mic - Before: task_history =", task_history)
if file is None:
return history, task_history
file_with_extension = file + '.wav'
os.rename(file, file_with_extension)
history.append(((file_with_extension,), None))
task_history.append(((file_with_extension,), None))
print("Add Mic - After: task_history =", task_history)
return history, task_history
def reset_user_input():
return gr.update(value="")
def reset_state(task_history):
print("Reset State - Before: task_history =", task_history)
task_history = []
print("Reset State - After: task_history =", task_history)
return []
iface = gr.Interface(
fn=predict,
inputs=[
gr.Audio(label="Audio Input"),
gr.Textbox(label="Text Query"),
gr.State()
],
outputs=[
"text",
gr.State()
],
title="Audio-Text Interaction Model",
description="This model can process an audio input along with a text query and provide a response.",
theme="default",
allow_flagging="never"
)
iface.launch()