Spaces:
Runtime error
Runtime error
Create app1.py
#4
by
emre
- opened
app1.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from io import BytesIO
|
3 |
+
import base64
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
from PIL import Image, ImageOps
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
from makeavid_sd.inference import (
|
10 |
+
InferenceUNetPseudo3D,
|
11 |
+
jnp,
|
12 |
+
SCHEDULERS
|
13 |
+
)
|
14 |
+
|
15 |
+
print(os.environ.get('XLA_PYTHON_CLIENT_PREALLOCATE', 'NotSet'))
|
16 |
+
print(os.environ.get('XLA_PYTHON_CLIENT_ALLOCATOR', 'NotSet'))
|
17 |
+
|
18 |
+
_preheat: bool = False
|
19 |
+
|
20 |
+
_seen_compilations = set()
|
21 |
+
|
22 |
+
_model = InferenceUNetPseudo3D(
|
23 |
+
model_path = 'TempoFunk/makeavid-sd-jax',
|
24 |
+
dtype = jnp.float16,
|
25 |
+
hf_auth_token = os.environ.get('HUGGING_FACE_HUB_TOKEN', None)
|
26 |
+
)
|
27 |
+
|
28 |
+
if _model.failed != False:
|
29 |
+
trace = f'```{_model.failed}```'
|
30 |
+
with gr.Blocks(title = 'Make-A-Video Stable Diffusion JAX', analytics_enabled = False) as demo:
|
31 |
+
exception = gr.Markdown(trace)
|
32 |
+
|
33 |
+
demo.launch()
|
34 |
+
|
35 |
+
_output_formats = (
|
36 |
+
'webp', 'gif'
|
37 |
+
)
|
38 |
+
|
39 |
+
# gradio is illiterate. type hints make it go poopoo in pantsu.
|
40 |
+
def generate(
|
41 |
+
prompt = 'An elderly man having a great time in the park.',
|
42 |
+
neg_prompt = '',
|
43 |
+
hint_image = None,
|
44 |
+
inference_steps = 20,
|
45 |
+
cfg = 15.0,
|
46 |
+
cfg_image = 9.0,
|
47 |
+
seed = 0,
|
48 |
+
fps = 24,
|
49 |
+
num_frames = 24,
|
50 |
+
height = 512,
|
51 |
+
width = 512,
|
52 |
+
scheduler_type = 'DPM',
|
53 |
+
output_format = 'webp'
|
54 |
+
) -> str:
|
55 |
+
num_frames = int(num_frames)
|
56 |
+
inference_steps = int(inference_steps)
|
57 |
+
height = int(height)
|
58 |
+
width = int(width)
|
59 |
+
height = (height // 64) * 64
|
60 |
+
width = (width // 64) * 64
|
61 |
+
cfg = max(cfg, 1.0)
|
62 |
+
cfg_image = max(cfg_image, 1.0)
|
63 |
+
seed = int(seed)
|
64 |
+
if seed < 0:
|
65 |
+
seed = -seed
|
66 |
+
if hint_image is not None:
|
67 |
+
if hint_image.mode != 'RGB':
|
68 |
+
hint_image = hint_image.convert('RGB')
|
69 |
+
if hint_image.size != (width, height):
|
70 |
+
hint_image = ImageOps.fit(hint_image, (width, height), method = Image.Resampling.LANCZOS)
|
71 |
+
if scheduler_type not in SCHEDULERS:
|
72 |
+
scheduler_type = 'DPM'
|
73 |
+
output_format = output_format.lower()
|
74 |
+
if output_format not in _output_formats:
|
75 |
+
output_format = 'webp'
|
76 |
+
mask_image = None
|
77 |
+
images = _model.generate(
|
78 |
+
prompt = [prompt] * _model.device_count,
|
79 |
+
neg_prompt = neg_prompt,
|
80 |
+
hint_image = hint_image,
|
81 |
+
mask_image = mask_image,
|
82 |
+
inference_steps = inference_steps,
|
83 |
+
cfg = cfg,
|
84 |
+
cfg_image = cfg_image,
|
85 |
+
height = height,
|
86 |
+
width = width,
|
87 |
+
num_frames = num_frames,
|
88 |
+
seed = seed,
|
89 |
+
scheduler_type = scheduler_type
|
90 |
+
)
|
91 |
+
_seen_compilations.add((hint_image is None, inference_steps, height, width, num_frames))
|
92 |
+
buffer = BytesIO()
|
93 |
+
images[1].save(
|
94 |
+
buffer,
|
95 |
+
format = output_format,
|
96 |
+
save_all = True,
|
97 |
+
append_images = images[2:],
|
98 |
+
loop = 0,
|
99 |
+
duration = round(1000 / fps),
|
100 |
+
allow_mixed=True
|
101 |
+
)
|
102 |
+
data = base64.b64encode(buffer.getvalue()).decode()
|
103 |
+
buffer.close()
|
104 |
+
data = f'data:image/{output_format};base64,' + data
|
105 |
+
return data
|
106 |
+
def check_if_compiled(hint_image, inference_steps, height, width, num_frames, scheduler_type, message):
|
107 |
+
height = int(height)
|
108 |
+
width = int(width)
|
109 |
+
inference_steps = int(inference_steps)
|
110 |
+
height = (height // 64) * 64
|
111 |
+
width = (width // 64) * 64
|
112 |
+
if (hint_image is None, inference_steps, height, width, num_frames, scheduler_type) in _seen_compilations:
|
113 |
+
return ''
|
114 |
+
else:
|
115 |
+
return f"""{message}"""
|
116 |
+
|
117 |
+
if _preheat:
|
118 |
+
print('\npreheating the oven')
|
119 |
+
generate(
|
120 |
+
prompt = 'preheating the oven',
|
121 |
+
neg_prompt = '',
|
122 |
+
image = None,
|
123 |
+
inference_steps = 20,
|
124 |
+
cfg = 12.0,
|
125 |
+
seed = 0
|
126 |
+
)
|
127 |
+
print('Entertaining the guests with sailor songs played on an old piano.')
|
128 |
+
dada = generate(
|
129 |
+
prompt = 'Entertaining the guests with sailor songs played on an old harmonium.',
|
130 |
+
neg_prompt = '',
|
131 |
+
image = Image.new('RGB', size = (512, 512), color = (0, 0, 0)),
|
132 |
+
inference_steps = 20,
|
133 |
+
cfg = 12.0,
|
134 |
+
seed = 0
|
135 |
+
)
|
136 |
+
print('dinner is ready\n')
|
137 |
+
|
138 |
+
with gr.Blocks(title = 'Make-A-Video Stable Diffusion JAX', analytics_enabled = False) as demo:
|
139 |
+
variant = 'panel'
|
140 |
+
with gr.Row():
|
141 |
+
with gr.Column():
|
142 |
+
intro1 = gr.Markdown("""
|
143 |
+
# Make-A-Video Stable Diffusion JAX
|
144 |
+
We have extended a pretrained LDM inpainting image generation model with temporal convolutions and attention.
|
145 |
+
By taking advantage of the extra 5 input channels of the inpaint model, we guide the video generation with a hint image.
|
146 |
+
In this demo the hint image can be given by the user, otherwise it is generated by an generative image model.
|
147 |
+
The temporal layers are a port of [Make-A-Video PyTorch](https://github.com/lucidrains/make-a-video-pytorch) to FLAX.
|
148 |
+
The convolution is pseudo 3D and seperately convolves accross the spatial dimension in 2D and over the temporal dimension in 1D.
|
149 |
+
Temporal attention is purely self attention and also separately attends to time.
|
150 |
+
Only the new temporal layers have been fine tuned on a dataset of videos themed around dance.
|
151 |
+
The model has been trained for 80 epochs on a dataset of 18,000 Videos with 120 frames each, randomly selecting a 24 frame range from each sample.
|
152 |
+
See model and dataset links in the metadata.
|
153 |
+
Model implementation and training code can be found at <https://github.com/lopho/makeavid-sd-tpu>
|
154 |
+
""")
|
155 |
+
with gr.Column():
|
156 |
+
intro3 = gr.Markdown("""
|
157 |
+
**Please be patient. The model might have to compile with current parameters.**
|
158 |
+
This can take up to 5 minutes on the first run, and 2-3 minutes on later runs.
|
159 |
+
The compilation will be cached and consecutive runs with the same parameters
|
160 |
+
will be much faster.
|
161 |
+
Changes to the following parameters require the model to compile
|
162 |
+
- Number of frames
|
163 |
+
- Width & Height
|
164 |
+
- Inference steps
|
165 |
+
- Input image vs. no input image
|
166 |
+
- Noise scheduler type
|
167 |
+
If you encounter any issues, please report them here: [Space discussions](https://huggingface.co/spaces/TempoFunk/makeavid-sd-jax/discussions)
|
168 |
+
""")
|
169 |
+
|
170 |
+
with gr.Row(variant = variant):
|
171 |
+
with gr.Column():
|
172 |
+
with gr.Row():
|
173 |
+
#cancel_button = gr.Button(value = 'Cancel')
|
174 |
+
submit_button = gr.Button(value = 'Make A Video', variant = 'primary')
|
175 |
+
prompt_input = gr.Textbox(
|
176 |
+
label = 'Prompt',
|
177 |
+
value = 'They are dancing in the club but everybody is a 3d cg hairy monster wearing a hairy costume.',
|
178 |
+
interactive = True
|
179 |
+
)
|
180 |
+
neg_prompt_input = gr.Textbox(
|
181 |
+
label = 'Negative prompt (optional)',
|
182 |
+
value = 'monochrome, saturated',
|
183 |
+
interactive = True
|
184 |
+
)
|
185 |
+
cfg_input = gr.Slider(
|
186 |
+
label = 'Guidance scale video',
|
187 |
+
minimum = 1.0,
|
188 |
+
maximum = 20.0,
|
189 |
+
step = 0.1,
|
190 |
+
value = 15.0,
|
191 |
+
interactive = True
|
192 |
+
)
|
193 |
+
cfg_image_input = gr.Slider(
|
194 |
+
label = 'Guidance scale hint (no effect with input image)',
|
195 |
+
minimum = 1.0,
|
196 |
+
maximum = 20.0,
|
197 |
+
step = 0.1,
|
198 |
+
value = 9.0,
|
199 |
+
interactive = True
|
200 |
+
)
|
201 |
+
seed_input = gr.Number(
|
202 |
+
label = 'Random seed',
|
203 |
+
value = 0,
|
204 |
+
interactive = True,
|
205 |
+
precision = 0
|
206 |
+
)
|
207 |
+
image_input = gr.Image(
|
208 |
+
label = 'Hint image (optional)',
|
209 |
+
interactive = True,
|
210 |
+
image_mode = 'RGB',
|
211 |
+
type = 'pil',
|
212 |
+
optional = True,
|
213 |
+
source = 'upload'
|
214 |
+
)
|
215 |
+
inference_steps_input = gr.Slider(
|
216 |
+
label = 'Steps',
|
217 |
+
minimum = 2,
|
218 |
+
maximum = 100,
|
219 |
+
value = 20,
|
220 |
+
step = 1,
|
221 |
+
interactive = True
|
222 |
+
)
|
223 |
+
num_frames_input = gr.Slider(
|
224 |
+
label = 'Number of frames to generate',
|
225 |
+
minimum = 1,
|
226 |
+
maximum = 24,
|
227 |
+
step = 1,
|
228 |
+
value = 24,
|
229 |
+
interactive = True
|
230 |
+
)
|
231 |
+
width_input = gr.Slider(
|
232 |
+
label = 'Width',
|
233 |
+
minimum = 64,
|
234 |
+
maximum = 576,
|
235 |
+
step = 64,
|
236 |
+
value = 512,
|
237 |
+
interactive = True
|
238 |
+
)
|
239 |
+
height_input = gr.Slider(
|
240 |
+
label = 'Height',
|
241 |
+
minimum = 64,
|
242 |
+
maximum = 576,
|
243 |
+
step = 64,
|
244 |
+
value = 512,
|
245 |
+
interactive = True
|
246 |
+
)
|
247 |
+
scheduler_input = gr.Dropdown(
|
248 |
+
label = 'Noise scheduler',
|
249 |
+
choices = list(SCHEDULERS.keys()),
|
250 |
+
value = 'DPM',
|
251 |
+
interactive = True
|
252 |
+
)
|
253 |
+
with gr.Row():
|
254 |
+
fps_input = gr.Slider(
|
255 |
+
label = 'Output FPS',
|
256 |
+
minimum = 1,
|
257 |
+
maximum = 1000,
|
258 |
+
step = 1,
|
259 |
+
value = 12,
|
260 |
+
interactive = True
|
261 |
+
)
|
262 |
+
output_format = gr.Dropdown(
|
263 |
+
label = 'Output format',
|
264 |
+
choices = _output_formats,
|
265 |
+
value = 'gif',
|
266 |
+
interactive = True
|
267 |
+
)
|
268 |
+
with gr.Column():
|
269 |
+
#will_trigger = gr.Markdown('')
|
270 |
+
patience = gr.Markdown('**Please be patient. The model might have to compile with current parameters.**')
|
271 |
+
image_output = gr.Image(
|
272 |
+
label = 'Output',
|
273 |
+
value = 'example.gif',
|
274 |
+
interactive = False
|
275 |
+
)
|
276 |
+
#trigger_inputs = [ image_input, inference_steps_input, height_input, width_input, num_frames_input, scheduler_input ]
|
277 |
+
#trigger_check_fun = partial(check_if_compiled, message = 'Current parameters need compilation.')
|
278 |
+
#height_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
|
279 |
+
#width_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
|
280 |
+
#num_frames_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
|
281 |
+
#image_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
|
282 |
+
#inference_steps_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
|
283 |
+
#scheduler_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
|
284 |
+
submit_button.click(
|
285 |
+
fn = generate,
|
286 |
+
inputs = [
|
287 |
+
prompt_input,
|
288 |
+
neg_prompt_input,
|
289 |
+
image_input,
|
290 |
+
inference_steps_input,
|
291 |
+
cfg_input,
|
292 |
+
cfg_image_input,
|
293 |
+
seed_input,
|
294 |
+
fps_input,
|
295 |
+
num_frames_input,
|
296 |
+
height_input,
|
297 |
+
width_input,
|
298 |
+
scheduler_input,
|
299 |
+
output_format
|
300 |
+
],
|
301 |
+
outputs = image_output,
|
302 |
+
postprocess = False
|
303 |
+
)
|
304 |
+
#cancel_button.click(fn = lambda: None, cancels = ev)
|
305 |
+
|
306 |
+
demo.queue(concurrency_count = 1, max_size = 12)
|
307 |
+
demo.launch()
|
308 |
+
# Photorealistic fantasy oil painting of the angry minotaur in a threatening pose by Randy Vargas.
|
309 |
+
# A girl is dancing by a beautiful lake by sophie anderson and greg rutkowski and alphonse mucha.
|
310 |
+
# They are dancing in the club but everybody is a 3d cg hairy monster wearing a hairy costume.
|