Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
from transformers import AutoTokenizer, T5EncoderModel, T5ForConditionalGeneration | |
class MT5Embedder(nn.Module): | |
available_models = ["t5-v1_1-xxl"] | |
def __init__( | |
self, | |
model_dir="t5-v1_1-xxl", | |
model_kwargs=None, | |
torch_dtype=None, | |
use_tokenizer_only=False, | |
conditional_generation=False, | |
max_length=128, | |
): | |
super().__init__() | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
self.torch_dtype = torch_dtype or torch.bfloat16 | |
self.max_length = max_length | |
if model_kwargs is None: | |
model_kwargs = { | |
# "low_cpu_mem_usage": True, | |
"torch_dtype": self.torch_dtype, | |
} | |
model_kwargs["device_map"] = {"shared": self.device, "encoder": self.device} | |
self.tokenizer = AutoTokenizer.from_pretrained(model_dir) | |
if use_tokenizer_only: | |
return | |
if conditional_generation: | |
self.model = None | |
self.generation_model = T5ForConditionalGeneration.from_pretrained( | |
model_dir | |
) | |
return | |
self.model = T5EncoderModel.from_pretrained(model_dir, **model_kwargs).eval().to(self.torch_dtype) | |
def get_tokens_and_mask(self, texts): | |
text_tokens_and_mask = self.tokenizer( | |
texts, | |
max_length=self.max_length, | |
padding="max_length", | |
truncation=True, | |
return_attention_mask=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
tokens = text_tokens_and_mask["input_ids"][0] | |
mask = text_tokens_and_mask["attention_mask"][0] | |
# tokens = torch.tensor(tokens).clone().detach() | |
# mask = torch.tensor(mask, dtype=torch.bool).clone().detach() | |
return tokens, mask | |
def get_text_embeddings(self, texts, attention_mask=True, layer_index=-1): | |
text_tokens_and_mask = self.tokenizer( | |
texts, | |
max_length=self.max_length, | |
padding="max_length", | |
truncation=True, | |
return_attention_mask=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
with torch.no_grad(): | |
outputs = self.model( | |
input_ids=text_tokens_and_mask["input_ids"].to(self.device), | |
attention_mask=text_tokens_and_mask["attention_mask"].to(self.device) | |
if attention_mask | |
else None, | |
output_hidden_states=True, | |
) | |
text_encoder_embs = outputs["hidden_states"][layer_index].detach() | |
return text_encoder_embs, text_tokens_and_mask["attention_mask"].to(self.device) | |
def __call__(self, tokens, attention_mask, layer_index=-1): | |
with torch.cuda.amp.autocast(): | |
outputs = self.model( | |
input_ids=tokens, | |
attention_mask=attention_mask, | |
output_hidden_states=True, | |
) | |
z = outputs.hidden_states[layer_index].detach() | |
return z | |
def general(self, text: str): | |
# input_ids = input_ids = torch.tensor([list(text.encode("utf-8"))]) + num_special_tokens | |
input_ids = self.tokenizer(text, max_length=128).input_ids | |
print(input_ids) | |
outputs = self.generation_model(input_ids) | |
return outputs |