Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,521 Bytes
77771e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import argparse
import os
from util import util
import torch
import models
import data
class BaseOptions():
def __init__(self):
self.initialized = False
def initialize(self, parser):
"""Initialize options used during both training and test time."""
# Basic options
parser.add_argument('--dataroot', required=False, help='path to images (should have subfolders trainA, trainB, valA, valB, etc)')
parser.add_argument('--batch_size', type=int, default=2, help='input batch size')
parser.add_argument('--load_size', type=int, default=512, help='scale images to this size') # Modified default
parser.add_argument('--crop_size', type=int, default=1024, help='then crop to this size') # Modified default
parser.add_argument('--input_nc', type=int, default=1, help='# of input image channels') # Modified default
parser.add_argument('--output_nc', type=int, default=3, help='# of output image channels') # Modified default
parser.add_argument('--nz', type=int, default=64, help='#latent vector') # Modified default
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2, -1 for CPU mode')
parser.add_argument('--name', type=str, default='color2manga_cycle_ganstft', help='name of the experiment') # Modified default
parser.add_argument('--preprocess', type=str, default='none', help='not implemented') # Modified default
parser.add_argument('--dataset_mode', type=str, default='aligned', help='aligned,single')
parser.add_argument('--model', type=str, default='cycle_ganstft', help='chooses which model to use')
parser.add_argument('--direction', type=str, default='BtoA', help='AtoB or BtoA') # Modified default
parser.add_argument('--epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model')
parser.add_argument('--num_threads', default=4, type=int, help='# threads for loading data')
parser.add_argument('--local_rank', default=0, type=int, help='# threads for loading data')
parser.add_argument('--checkpoints_dir', type=str, default=self.model_global_path+'/ScreenStyle/color2manga/', help='models are saved here') # Modified default
parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly')
parser.add_argument('--use_dropout', action='store_true', help='use dropout for the generator')
parser.add_argument('--max_dataset_size', type=int, default=float("inf"), help='Maximum number of samples allowed per dataset.')
parser.add_argument('--no_flip', action='store_false', help='if specified, do not flip the images for data argumentation') # Modified default
# Model parameters
parser.add_argument('--level', type=int, default=0, help='level to train')
parser.add_argument('--num_Ds', type=int, default=2, help='number of Discriminators')
parser.add_argument('--netD', type=str, default='basic_256_multi', help='selects model to use for netD')
parser.add_argument('--netD2', type=str, default='basic_256_multi', help='selects model to use for netD2')
parser.add_argument('--netG', type=str, default='unet_256', help='selects model to use for netG')
parser.add_argument('--netC', type=str, default='unet_128', help='selects model to use for netC')
parser.add_argument('--netE', type=str, default='conv_256', help='selects model to use for netE')
parser.add_argument('--nef', type=int, default=48, help='# of encoder filters in the first conv layer') # Modified default
parser.add_argument('--ngf', type=int, default=48, help='# of gen filters in the last conv layer') # Modified default
parser.add_argument('--ndf', type=int, default=32, help='# of discrim filters in the first conv layer') # Modified default
parser.add_argument('--norm', type=str, default='layer', help='instance normalization or batch normalization')
parser.add_argument('--upsample', type=str, default='bilinear', help='basic | bilinear') # Modified default
parser.add_argument('--nl', type=str, default='prelu', help='non-linearity activation: relu | lrelu | elu')
parser.add_argument('--no_encode', action='store_true', help='if specified, print more debugging information')
parser.add_argument('--color2screen', action='store_true', help='continue training: load the latest model including RGB model') # Modified default
# Extra parameters
parser.add_argument('--where_add', type=str, default='all', help='input|all|middle; where to add z in the network G')
parser.add_argument('--conditional_D', action='store_true', help='if use conditional GAN for D')
parser.add_argument('--init_type', type=str, default='kaiming', help='network initialization [normal | xavier | kaiming | orthogonal]')
parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.')
parser.add_argument('--center_crop', action='store_true', help='if apply for center cropping for the test') # Modified default
parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information')
parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{load_size}')
parser.add_argument('--display_winsize', type=int, default=256, help='display window size')
# Special tasks
self.initialized = True
return parser
def gather_options(self):
"""Initialize our parser with basic options (only once)."""
if not self.initialized:
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser = self.initialize(parser)
# Get the basic options
opt, _ = parser.parse_known_args()
# Modify model-related parser options
model_name = opt.model
model_option_setter = models.get_option_setter(model_name)
parser = model_option_setter(parser, self.isTrain)
opt, _ = parser.parse_known_args() # Parse again with new defaults
# Modify dataset-related parser options
dataset_name = opt.dataset_mode
dataset_option_setter = data.get_option_setter(dataset_name)
parser = dataset_option_setter(parser, self.isTrain)
# Save and return the parser
self.parser = parser
return parser.parse_args()
def print_options(self, opt):
"""Print and save options."""
message = ''
message += '----------------- Options ---------------\n'
for k, v in sorted(vars(opt).items()):
comment = ''
default = self.parser.get_default(k)
if v != default:
comment = '\t[default: %s]' % str(default)
message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
message += '----------------- End -------------------'
print(message)
# Save to the disk
expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
if not os.path.exists(expr_dir):
try:
util.mkdirs(expr_dir)
except:
pass
file_name = os.path.join(expr_dir, 'opt.txt')
with open(file_name, 'wt') as opt_file:
opt_file.write(message)
opt_file.write('\n')
def parse(self, model_global_path):
"""Parse options, create checkpoints directory suffix, and set up gpu device."""
self.model_global_path = model_global_path
opt = self.gather_options()
opt.isTrain = self.isTrain # train or test
# Process opt.suffix
if opt.suffix:
suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else ''
opt.name = opt.name + suffix
self.print_options(opt)
# Set gpu ids
str_ids = opt.gpu_ids.split(',')
opt.gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >= 0:
opt.gpu_ids.append(id)
if len(opt.gpu_ids) > 0:
torch.cuda.set_device(opt.gpu_ids[0])
self.opt = opt
return self.opt |