File size: 4,322 Bytes
77771e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from __future__ import print_function
import torch
import numpy as np
from PIL import Image
import os
import pickle


def tensor2im(input_image, imtype=np.uint8):
    """"Convert a Tensor array into a numpy image array.
    Parameters:
        input_image (tensor) --  the input image tensor array
        imtype (type)        --  the desired type of the converted numpy array
    """
    if not isinstance(input_image, np.ndarray):
        if isinstance(input_image, torch.Tensor):  # get the data from a variable
            image_tensor = input_image.data
        else:
            return input_image
        image_numpy = image_tensor[0].cpu().float().numpy()  # convert it into a numpy array
        if image_numpy.shape[0] == 1:  # grayscale to RGB
            image_numpy = np.tile(image_numpy, (3, 1, 1))
        image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0  # post-processing: tranpose and scaling
    else:  # if it is a numpy array, do nothing
        image_numpy = input_image
    return image_numpy.astype(imtype)


def tensor2vec(vector_tensor):
    numpy_vec = vector_tensor.data.cpu().numpy()
    if numpy_vec.ndim == 4:
        return numpy_vec[:, :, 0, 0]
    else:
        return numpy_vec


def pickle_load(file_name):
    data = None
    with open(file_name, 'rb') as f:
        data = pickle.load(f)
    return data


def pickle_save(file_name, data):
    with open(file_name, 'wb') as f:
        pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL)


def diagnose_network(net, name='network'):
    """Calculate and print the mean of average absolute(gradients)
    Parameters:
        net (torch network) -- Torch network
        name (str) -- the name of the network
    """
    mean = 0.0
    count = 0
    for param in net.parameters():
        if param.grad is not None:
            mean += torch.mean(torch.abs(param.grad.data))
            count += 1
    if count > 0:
        mean = mean / count
    print(name)
    print(mean)


def interp_z(z0, z1, num_frames, interp_mode='linear'):
    zs = []
    if interp_mode == 'linear':
        for n in range(num_frames):
            ratio = n / float(num_frames - 1)
            z_t = (1 - ratio) * z0 + ratio * z1
            zs.append(z_t[np.newaxis, :])
        zs = np.concatenate(zs, axis=0).astype(np.float32)

    if interp_mode == 'slerp':
        z0_n = z0 / (np.linalg.norm(z0) + 1e-10)
        z1_n = z1 / (np.linalg.norm(z1) + 1e-10)
        omega = np.arccos(np.dot(z0_n, z1_n))
        sin_omega = np.sin(omega)
        if sin_omega < 1e-10 and sin_omega > -1e-10:
            zs = interp_z(z0, z1, num_frames, interp_mode='linear')
        else:
            for n in range(num_frames):
                ratio = n / float(num_frames - 1)
                z_t = np.sin((1 - ratio) * omega) / sin_omega * z0 + np.sin(ratio * omega) / sin_omega * z1
                zs.append(z_t[np.newaxis, :])
        zs = np.concatenate(zs, axis=0).astype(np.float32)

    return zs


def save_image(image_numpy, image_path):
    """Save a numpy image to the disk
    Parameters:
        image_numpy (numpy array) -- input numpy array
        image_path (str)          -- the path of the image
    """
    image_pil = Image.fromarray(image_numpy)
    image_pil.save(image_path)


def print_numpy(x, val=True, shp=False):
    """Print the mean, min, max, median, std, and size of a numpy array
    Parameters:
        val (bool) -- if print the values of the numpy array
        shp (bool) -- if print the shape of the numpy array
    """
    x = x.astype(np.float64)
    if shp:
        print('shape,', x.shape)
    if val:
        x = x.flatten()
        print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % (
            np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x)))


def mkdirs(paths):
    """create empty directories if they don't exist
    Parameters:
        paths (str list) -- a list of directory paths
    """
    if isinstance(paths, list) and not isinstance(paths, str):
        for path in paths:
            mkdir(path)
    else:
        mkdir(paths)


def mkdir(path):
    """create a single empty directory if it didn't exist
    Parameters:
        path (str) -- a single directory path
    """
    if not os.path.exists(path):
        os.makedirs(path, exist_ok=True)