Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,250 Bytes
77771e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
import contextlib
import gc
import json
import logging
import math
import os
import random
import shutil
import sys
import time
import itertools
from pathlib import Path
import cv2
import numpy as np
from PIL import Image, ImageDraw
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
import accelerate
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from datasets import load_dataset
from huggingface_hub import create_repo, upload_folder
from packaging import version
from safetensors.torch import load_model
from peft import LoraConfig
import gradio as gr
import pandas as pd
import transformers
from transformers import (
AutoTokenizer,
PretrainedConfig,
CLIPVisionModelWithProjection,
CLIPImageProcessor,
CLIPProcessor,
)
import diffusers
from diffusers import (
AutoencoderKL,
DDPMScheduler,
ColorGuiderPixArtModel,
ColorGuiderSDModel,
UNet2DConditionModel,
PixArtTransformer2DModel,
ColorFlowPixArtAlphaPipeline,
ColorFlowSDPipeline,
UniPCMultistepScheduler,
)
from util_colorflow.utils import *
sys.path.append('./BidirectionalTranslation')
from options.test_options import TestOptions
from models import create_model
from util import util
from huggingface_hub import snapshot_download
model_global_path = snapshot_download(repo_id="JunhaoZhuang/ColorFlow", cache_dir='./colorflow/')
print(model_global_path)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
weight_dtype = torch.float16
# line model
line_model_path = model_global_path + '/LE/erika.pth'
line_model = res_skip()
line_model.load_state_dict(torch.load(line_model_path))
line_model.eval()
line_model.cuda()
# screen model
global opt
opt = TestOptions().parse(model_global_path)
ScreenModel = create_model(opt, model_global_path)
ScreenModel.setup(opt)
ScreenModel.eval()
image_processor = CLIPImageProcessor()
image_encoder = CLIPVisionModelWithProjection.from_pretrained(model_global_path + '/image_encoder/').to('cuda')
examples = [
[
"./assets/example_5/input.png",
["./assets/example_5/ref1.png", "./assets/example_5/ref2.png", "./assets/example_5/ref3.png"],
"GrayImage(ScreenStyle)",
"800x512",
0,
10
],
[
"./assets/example_4/input.jpg",
["./assets/example_4/ref1.jpg", "./assets/example_4/ref2.jpg", "./assets/example_4/ref3.jpg"],
"GrayImage(ScreenStyle)",
"640x640",
0,
10
],
[
"./assets/example_3/input.png",
["./assets/example_3/ref1.png", "./assets/example_3/ref2.png", "./assets/example_3/ref3.png"],
"GrayImage(ScreenStyle)",
"800x512",
0,
10
],
[
"./assets/example_2/input.png",
["./assets/example_2/ref1.png", "./assets/example_2/ref2.png", "./assets/example_2/ref3.png"],
"GrayImage(ScreenStyle)",
"800x512",
0,
10
],
[
"./assets/example_1/input.jpg",
["./assets/example_1/ref1.jpg", "./assets/example_1/ref2.jpg", "./assets/example_1/ref3.jpg"],
"Sketch",
"640x640",
0,
10
],
[
"./assets/example_0/input.jpg",
["./assets/example_0/ref1.jpg"],
"Sketch",
"640x640",
0,
10
],
]
global pipeline
global MultiResNetModel
def load_ckpt(input_style):
global pipeline
global MultiResNetModel
if input_style == "Sketch":
ckpt_path = model_global_path + '/sketch/'
rank = 128
pretrained_model_name_or_path = 'PixArt-alpha/PixArt-XL-2-1024-MS'
transformer = PixArtTransformer2DModel.from_pretrained(
pretrained_model_name_or_path, subfolder="transformer", revision=None, variant=None
)
pixart_config = get_pixart_config()
ColorGuider = ColorGuiderPixArtModel.from_pretrained(ckpt_path)
transformer_lora_config = LoraConfig(
r=rank,
lora_alpha=rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0", "proj_in", "proj_out", "ff.net.0.proj", "ff.net.2", "proj", "linear", "linear_1", "linear_2"]
)
transformer.add_adapter(transformer_lora_config)
ckpt_key_t = torch.load(ckpt_path + 'transformer_lora.bin', map_location='cpu')
transformer.load_state_dict(ckpt_key_t, strict=False)
transformer.to('cuda', dtype=weight_dtype)
ColorGuider.to('cuda', dtype=weight_dtype)
pipeline = ColorFlowPixArtAlphaPipeline.from_pretrained(
pretrained_model_name_or_path,
transformer=transformer,
colorguider=ColorGuider,
safety_checker=None,
revision=None,
variant=None,
torch_dtype=weight_dtype,
)
pipeline = pipeline.to("cuda")
block_out_channels = [128, 128, 256, 512, 512]
MultiResNetModel = MultiHiddenResNetModel(block_out_channels, len(block_out_channels))
MultiResNetModel.load_state_dict(torch.load(ckpt_path + 'MultiResNetModel.bin', map_location='cpu'), strict=False)
MultiResNetModel.to('cuda', dtype=weight_dtype)
elif input_style == "GrayImage(ScreenStyle)":
ckpt_path = model_global_path + '/GraySD/'
rank = 64
pretrained_model_name_or_path = 'stable-diffusion-v1-5/stable-diffusion-v1-5'
unet = UNet2DConditionModel.from_pretrained(
pretrained_model_name_or_path, subfolder="unet", revision=None, variant=None
)
ColorGuider = ColorGuiderSDModel.from_pretrained(ckpt_path)
ColorGuider.to('cuda', dtype=weight_dtype)
unet.to('cuda', dtype=weight_dtype)
pipeline = ColorFlowSDPipeline.from_pretrained(
pretrained_model_name_or_path,
unet=unet,
colorguider=ColorGuider,
safety_checker=None,
revision=None,
variant=None,
torch_dtype=weight_dtype,
)
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
unet_lora_config = LoraConfig(
r=rank,
lora_alpha=rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0", "ff.net.0.proj", "ff.net.2"],#ff.net.0.proj ff.net.2
)
pipeline.unet.add_adapter(unet_lora_config)
pipeline.unet.load_state_dict(torch.load(ckpt_path + 'unet_lora.bin', map_location='cpu'), strict=False)
pipeline = pipeline.to("cuda")
block_out_channels = [128, 128, 256, 512, 512]
MultiResNetModel = MultiHiddenResNetModel(block_out_channels, len(block_out_channels))
MultiResNetModel.load_state_dict(torch.load(ckpt_path + 'MultiResNetModel.bin', map_location='cpu'), strict=False)
MultiResNetModel.to('cuda', dtype=weight_dtype)
global cur_input_style
cur_input_style = "Sketch"
load_ckpt(cur_input_style)
cur_input_style = "GrayImage(ScreenStyle)"
load_ckpt(cur_input_style)
def fix_random_seeds(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def process_multi_images(files):
images = [Image.open(file.name) for file in files]
imgs = []
for i, img in enumerate(images):
imgs.append(img)
return imgs
def extract_lines(image):
src = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
rows = int(np.ceil(src.shape[0] / 16)) * 16
cols = int(np.ceil(src.shape[1] / 16)) * 16
patch = np.ones((1, 1, rows, cols), dtype="float32")
patch[0, 0, 0:src.shape[0], 0:src.shape[1]] = src
tensor = torch.from_numpy(patch).cuda()
with torch.no_grad():
y = line_model(tensor)
yc = y.cpu().numpy()[0, 0, :, :]
yc[yc > 255] = 255
yc[yc < 0] = 0
outimg = yc[0:src.shape[0], 0:src.shape[1]]
outimg = outimg.astype(np.uint8)
outimg = Image.fromarray(outimg)
torch.cuda.empty_cache()
return outimg
def to_screen_image(input_image):
global opt
global ScreenModel
input_image = input_image.convert('RGB')
input_image = get_ScreenVAE_input(input_image, opt)
h = input_image['h']
w = input_image['w']
ScreenModel.set_input(input_image)
fake_B, fake_B2, SCR = ScreenModel.forward(AtoB=True)
images=fake_B2[:,:,:h,:w]
im = util.tensor2im(images)
image_pil = Image.fromarray(im)
torch.cuda.empty_cache()
return image_pil
def extract_line_image(query_image_, input_style, resolution):
if resolution == "640x640":
tar_width = 640
tar_height = 640
elif resolution == "512x800":
tar_width = 512
tar_height = 800
elif resolution == "800x512":
tar_width = 800
tar_height = 512
else:
gr.Info("Unsupported resolution")
query_image = process_image(query_image_, int(tar_width*1.5), int(tar_height*1.5))
if input_style == "GrayImage(ScreenStyle)":
extracted_line = to_screen_image(query_image)
extracted_line = Image.blend(extracted_line.convert('L').convert('RGB'), query_image.convert('L').convert('RGB'), 0.5)
input_context = extracted_line
elif input_style == "Sketch":
query_image = query_image.convert('L').convert('RGB')
extracted_line = extract_lines(query_image)
extracted_line = extracted_line.convert('L').convert('RGB')
input_context = extracted_line
torch.cuda.empty_cache()
return input_context, extracted_line, input_context
def colorize_image(VAE_input, input_context, reference_images, resolution, seed, input_style, num_inference_steps):
if VAE_input is None or input_context is None:
gr.Info("Please preprocess the image first")
raise ValueError("Please preprocess the image first")
global cur_input_style
global pipeline
global MultiResNetModel
if input_style != cur_input_style:
gr.Info(f"Loading {input_style} model...")
load_ckpt(input_style)
cur_input_style = input_style
gr.Info(f"{input_style} model loaded")
reference_images = process_multi_images(reference_images)
fix_random_seeds(seed)
if resolution == "640x640":
tar_width = 640
tar_height = 640
elif resolution == "512x800":
tar_width = 512
tar_height = 800
elif resolution == "800x512":
tar_width = 800
tar_height = 512
else:
gr.Info("Unsupported resolution")
validation_mask = Image.open('./assets/mask.png').convert('RGB').resize((tar_width*2, tar_height*2))
gr.Info("Image retrieval in progress...")
query_image_bw = process_image(input_context, int(tar_width), int(tar_height))
query_image = query_image_bw.convert('RGB')
query_image_vae = process_image(VAE_input, int(tar_width*1.5), int(tar_height*1.5))
reference_images = [process_image(ref_image, tar_width, tar_height) for ref_image in reference_images]
query_patches_pil = process_image_Q_varres(query_image, tar_width, tar_height)
reference_patches_pil = []
for reference_image in reference_images:
reference_patches_pil += process_image_ref_varres(reference_image, tar_width, tar_height)
combined_image = None
with torch.no_grad():
clip_img = image_processor(images=query_patches_pil, return_tensors="pt").pixel_values.to(image_encoder.device, dtype=image_encoder.dtype)
query_embeddings = image_encoder(clip_img).image_embeds
reference_patches_pil_gray = [rimg.convert('RGB').convert('RGB') for rimg in reference_patches_pil]
clip_img = image_processor(images=reference_patches_pil_gray, return_tensors="pt").pixel_values.to(image_encoder.device, dtype=image_encoder.dtype)
reference_embeddings = image_encoder(clip_img).image_embeds
cosine_similarities = F.cosine_similarity(query_embeddings.unsqueeze(1), reference_embeddings.unsqueeze(0), dim=-1)
sorted_indices = torch.argsort(cosine_similarities, descending=True, dim=1).tolist()
top_k = 3
top_k_indices = [cur_sortlist[:top_k] for cur_sortlist in sorted_indices]
combined_image = Image.new('RGB', (tar_width * 2, tar_height * 2), 'white')
combined_image.paste(query_image_bw.resize((tar_width, tar_height)), (tar_width//2, tar_height//2))
idx_table = {0:[(1,0), (0,1), (0,0)], 1:[(1,3), (0,2),(0,3)], 2:[(2,0),(3,1), (3,0)], 3:[(2,3), (3,2),(3,3)]}
for i in range(2):
for j in range(2):
idx_list = idx_table[i * 2 + j]
for k in range(top_k):
ref_index = top_k_indices[i * 2 + j][k]
idx_y = idx_list[k][0]
idx_x = idx_list[k][1]
combined_image.paste(reference_patches_pil[ref_index].resize((tar_width//2-2, tar_height//2-2)), (tar_width//2 * idx_x + 1, tar_height//2 * idx_y + 1))
gr.Info("Model inference in progress...")
generator = torch.Generator(device='cuda').manual_seed(seed)
image = pipeline(
"manga", cond_image=combined_image, cond_mask=validation_mask, num_inference_steps=num_inference_steps, generator=generator
).images[0]
gr.Info("Post-processing image...")
with torch.no_grad():
width, height = image.size
new_width = width // 2
new_height = height // 2
left = (width - new_width) // 2
top = (height - new_height) // 2
right = left + new_width
bottom = top + new_height
center_crop = image.crop((left, top, right, bottom))
up_img = center_crop.resize(query_image_vae.size)
test_low_color = transform(up_img).unsqueeze(0).to('cuda', dtype=weight_dtype)
query_image_vae = transform(query_image_vae).unsqueeze(0).to('cuda', dtype=weight_dtype)
h_color, hidden_list_color = pipeline.vae._encode(test_low_color,return_dict = False, hidden_flag = True)
h_bw, hidden_list_bw = pipeline.vae._encode(query_image_vae, return_dict = False, hidden_flag = True)
hidden_list_double = [torch.cat((hidden_list_color[hidden_idx], hidden_list_bw[hidden_idx]), dim = 1) for hidden_idx in range(len(hidden_list_color))]
hidden_list = MultiResNetModel(hidden_list_double)
output = pipeline.vae._decode(h_color.sample(),return_dict = False, hidden_list = hidden_list)[0]
output[output > 1] = 1
output[output < -1] = -1
high_res_image = Image.fromarray(((output[0] * 0.5 + 0.5).permute(1, 2, 0).detach().cpu().numpy() * 255).astype(np.uint8)).convert("RGB")
gr.Info("Colorization complete!")
torch.cuda.empty_cache()
return high_res_image, up_img, image, query_image_bw
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="text-align: center;">
<h1 style="text-align: center; font-size: 3em;">🎨 ColorFlow:</h1>
<h3 style="text-align: center; font-size: 1.8em;">Retrieval-Augmented Image Sequence Colorization</h3>
<p style="text-align: center; font-weight: bold;">
<a href="https://zhuang2002.github.io/ColorFlow/">Project Page</a> |
<a href="https://arxiv.org/abs/">ArXiv Preprint</a> |
<a href="https://github.com/TencentARC/ColorFlow">GitHub Repository</a>
</p>
<p style="text-align: center; font-weight: bold;">
NOTE: Each time you switch the input style, the corresponding model will be reloaded, which may take some time. Please be patient.
</p>
<p style="text-align: left; font-size: 1.1em;">
Welcome to the demo of <strong>ColorFlow</strong>. Follow the steps below to explore the capabilities of our model:
</p>
</div>
<div style="text-align: left; margin: 0 auto;">
<ol style="font-size: 1.1em;">
<li>Choose input style: GrayImage(ScreenStyle) or Sketch.</li>
<li>Upload your image: Use the 'Upload' button to select the image you want to colorize.</li>
<li>Preprocess the image: Click the 'Preprocess' button to decolorize the image.</li>
<li>Upload reference images: Upload multiple reference images to guide the colorization.</li>
<li>Set sampling parameters (optional): Adjust the settings and click the <b>Colorize</b> button.</li>
</ol>
<p>
⏱️ <b>ZeroGPU Time Limit</b>: Hugging Face ZeroGPU has an inference time limit of 180 seconds. You may need to log in with a free account to use this demo. Large sampling steps might lead to timeout (GPU Abort). In that case, please consider logging in with a Pro account or running it on your local machine.
</p>
</div>
<div style="text-align: center;">
<p style="text-align: center; font-weight: bold;">
注意:每次切换输入样式时,相应的模型将被重新加载,可能需要一些时间。请耐心等待。
</p>
<p style="text-align: left; font-size: 1.1em;">
欢迎使用 <strong>ColorFlow</strong> 演示。请按照以下步骤探索我们模型的能力:
</p>
</div>
<div style="text-align: left; margin: 0 auto;">
<ol style="font-size: 1.1em;">
<li>选择输入样式:灰度图(ScreenStyle)、线稿。</li>
<li>上传您的图像:使用“上传”按钮选择要上色的图像。</li>
<li>预处理图像:点击“预处理”按钮以去色图像。</li>
<li>上传参考图像:上传多张参考图像以指导上色。</li>
<li>设置采样参数(可选):调整设置并点击 <b>上色</b> 按钮。</li>
</ol>
<p>
⏱️ <b>ZeroGPU时间限制</b>:Hugging Face ZeroGPU 的推理时间限制为 180 秒。您可能需要使用免费帐户登录以使用此演示。大采样步骤可能会导致超时(GPU 中止)。在这种情况下,请考虑使用专业帐户登录或在本地计算机上运行。
</p>
</div>
"""
)
VAE_input = gr.State()
input_context = gr.State()
# example_loading = gr.State(value=None)
with gr.Column():
with gr.Row():
input_style = gr.Radio(["GrayImage(ScreenStyle)", "Sketch"], label="Input Style", value="GrayImage(ScreenStyle)")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Image to Colorize")
resolution = gr.Radio(["640x640", "512x800", "800x512"], label="Select Resolution(Width*Height)", value="640x640")
extract_button = gr.Button("Preprocess (Decolorize)")
extracted_image = gr.Image(type="pil", label="Decolorized Result")
with gr.Row():
reference_images = gr.Files(label="Reference Images (Upload multiple)", file_count="multiple")
with gr.Column():
output_gallery = gr.Gallery(label="Colorization Results", type="pil")
seed = gr.Slider(label="Random Seed", minimum=0, maximum=100000, value=0, step=1)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=4, maximum=100, value=10, step=1)
colorize_button = gr.Button("Colorize")
# progress_text = gr.Textbox(label="Progress", interactive=False)
extract_button.click(
extract_line_image,
inputs=[input_image, input_style, resolution],
outputs=[extracted_image, VAE_input, input_context]
)
colorize_button.click(
colorize_image,
inputs=[VAE_input, input_context, reference_images, resolution, seed, input_style, num_inference_steps],
outputs=output_gallery
)
with gr.Column():
gr.Markdown("### Quick Examples")
gr.Examples(
examples=examples,
inputs=[input_image, reference_images, input_style, resolution, seed, num_inference_steps],
label="Examples",
examples_per_page=6,
)
demo.launch(server_name="0.0.0.0", server_port=22348) |