File size: 21,607 Bytes
a5beba4
77771e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31c840d
77771e4
 
 
 
 
 
 
 
d731fac
6a9a1ac
29bdf6b
4d6113d
29bdf6b
6a9a1ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d731fac
e1bc55b
77771e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f5c820
77771e4
 
 
 
 
 
 
1f5c820
77771e4
 
 
 
 
 
 
a5beba4
77771e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e257fb
77771e4
a5beba4
77771e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5beba4
77771e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5beba4
77771e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5beba4
77771e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5beba4
77771e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67e4eb5
77771e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee06406
6a9a1ac
29bdf6b
 
 
45cccad
 
0a5c8a9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import spaces
import contextlib
import gc
import json
import logging
import math
import os
import random
import shutil
import sys
import time
import itertools
from pathlib import Path

import cv2
import numpy as np
from PIL import Image, ImageDraw
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm

import accelerate
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed

from datasets import load_dataset
from huggingface_hub import create_repo, upload_folder
from packaging import version
from safetensors.torch import load_model
from peft import LoraConfig
import gradio as gr
import pandas as pd

import transformers
from transformers import (
    AutoTokenizer,
    PretrainedConfig,
    CLIPVisionModelWithProjection,
    CLIPImageProcessor,
    CLIPProcessor,
)

import diffusers
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    ColorGuiderPixArtModel,
    ColorGuiderSDModel,
    UNet2DConditionModel,
    PixArtTransformer2DModel,
    ColorFlowPixArtAlphaPipeline,
    ColorFlowSDPipeline,
    UniPCMultistepScheduler,
)
from colorflow_utils.utils import *

sys.path.append('./BidirectionalTranslation')
from options.test_options import TestOptions
from models import create_model
from util import util

from huggingface_hub import snapshot_download


article = r"""
If ColorFlow is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/ColorFlow' target='_blank'>Github Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/ColorFlow)](https://github.com/TencentARC/ColorFlow)
---

📧 **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>zhuangjh23@mails.tsinghua.edu.cn</b>.

📝 **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@misc{zhuang2024colorflow,
      title={ColorFlow: Retrieval-Augmented Image Sequence Colorization}, 
      author={Junhao Zhuang and Xuan Ju and Zhaoyang Zhang and Yong Liu and Shiyi Zhang and Chun Yuan and Ying Shan},
      year={2024},
      eprint={2412.11815},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2412.11815},
}
```
"""

model_global_path = snapshot_download(repo_id="TencentARC/ColorFlow", cache_dir='./colorflow/', repo_type="model")
print(model_global_path)


transform = transforms.Compose([
    transforms.ToTensor(),  
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])  
])
weight_dtype = torch.float16

# line model
line_model_path = model_global_path + '/LE/erika.pth'
line_model = res_skip()
line_model.load_state_dict(torch.load(line_model_path))
line_model.eval()
line_model.cuda()

# screen model
global opt

opt = TestOptions().parse(model_global_path)
ScreenModel = create_model(opt, model_global_path)
ScreenModel.setup(opt)
ScreenModel.eval()

image_processor = CLIPImageProcessor()
image_encoder = CLIPVisionModelWithProjection.from_pretrained(model_global_path + '/image_encoder/').to('cuda')


examples = [
    [
        "./assets/example_5/input.png", 
        ["./assets/example_5/ref1.png", "./assets/example_5/ref2.png", "./assets/example_5/ref3.png"], 
        "GrayImage(ScreenStyle)", 
        "800x512",  
        0, 
        10 
    ],
    [
        "./assets/example_4/input.jpg", 
        ["./assets/example_4/ref1.jpg", "./assets/example_4/ref2.jpg", "./assets/example_4/ref3.jpg"], 
        "GrayImage(ScreenStyle)", 
        "640x640",  
        0, 
        10 
    ],
    [
        "./assets/example_3/input.png", 
        ["./assets/example_3/ref1.png", "./assets/example_3/ref2.png", "./assets/example_3/ref3.png"], 
        "GrayImage(ScreenStyle)", 
        "800x512", 
        0, 
        10 
    ],
    [
        "./assets/example_2/input.png",  
        ["./assets/example_2/ref1.png", "./assets/example_2/ref2.png", "./assets/example_2/ref3.png"], 
        "GrayImage(ScreenStyle)",  
        "800x512",  
        0,  
        10  
    ],
    [
        "./assets/example_1/input.jpg", 
        ["./assets/example_1/ref1.jpg", "./assets/example_1/ref2.jpg", "./assets/example_1/ref3.jpg"], 
        "Sketch",  
        "640x640", 
        1, 
        10  
    ],
    [
        "./assets/example_0/input.jpg", 
        ["./assets/example_0/ref1.jpg"], 
        "Sketch", 
        "640x640",  
        1, 
        10 
    ],
]

global pipeline
global MultiResNetModel

@spaces.GPU
def load_ckpt(input_style):
    global pipeline
    global MultiResNetModel
    if input_style == "Sketch":
        ckpt_path = model_global_path + '/sketch/'
        rank = 128
        pretrained_model_name_or_path = 'PixArt-alpha/PixArt-XL-2-1024-MS'
        transformer = PixArtTransformer2DModel.from_pretrained(
            pretrained_model_name_or_path, subfolder="transformer", revision=None, variant=None
        )
        pixart_config = get_pixart_config()

        ColorGuider = ColorGuiderPixArtModel.from_pretrained(ckpt_path)

        transformer_lora_config = LoraConfig(
            r=rank,
            lora_alpha=rank,
            init_lora_weights="gaussian",
            target_modules=["to_k", "to_q", "to_v", "to_out.0", "proj_in", "proj_out", "ff.net.0.proj", "ff.net.2", "proj", "linear", "linear_1", "linear_2"]
        )
        transformer.add_adapter(transformer_lora_config)
        ckpt_key_t = torch.load(ckpt_path + 'transformer_lora.bin', map_location='cpu')
        transformer.load_state_dict(ckpt_key_t, strict=False)

        transformer.to('cuda', dtype=weight_dtype)
        ColorGuider.to('cuda', dtype=weight_dtype)
        
        pipeline = ColorFlowPixArtAlphaPipeline.from_pretrained(
            pretrained_model_name_or_path,
            transformer=transformer,
            colorguider=ColorGuider,
            safety_checker=None,
            revision=None,
            variant=None,
            torch_dtype=weight_dtype,
        )
        pipeline = pipeline.to("cuda")
        block_out_channels = [128, 128, 256, 512, 512]
        
        MultiResNetModel = MultiHiddenResNetModel(block_out_channels, len(block_out_channels))
        MultiResNetModel.load_state_dict(torch.load(ckpt_path + 'MultiResNetModel.bin', map_location='cpu'), strict=False)
        MultiResNetModel.to('cuda', dtype=weight_dtype)

    elif input_style == "GrayImage(ScreenStyle)":
        ckpt_path = model_global_path + '/GraySD/'
        rank = 64
        pretrained_model_name_or_path = 'stable-diffusion-v1-5/stable-diffusion-v1-5'
        unet = UNet2DConditionModel.from_pretrained(
            pretrained_model_name_or_path, subfolder="unet", revision=None, variant=None
        )
        ColorGuider = ColorGuiderSDModel.from_pretrained(ckpt_path)
        ColorGuider.to('cuda', dtype=weight_dtype)
        unet.to('cuda', dtype=weight_dtype)
        
        pipeline = ColorFlowSDPipeline.from_pretrained(
            pretrained_model_name_or_path,
            unet=unet,
            colorguider=ColorGuider,
            safety_checker=None,
            revision=None,
            variant=None,
            torch_dtype=weight_dtype,
        )
        pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
        unet_lora_config = LoraConfig(
            r=rank,
            lora_alpha=rank,
            init_lora_weights="gaussian",
            target_modules=["to_k", "to_q", "to_v", "to_out.0", "ff.net.0.proj", "ff.net.2"],#ff.net.0.proj ff.net.2
        )
        pipeline.unet.add_adapter(unet_lora_config)
        pipeline.unet.load_state_dict(torch.load(ckpt_path + 'unet_lora.bin', map_location='cpu'), strict=False)
        pipeline = pipeline.to("cuda")
        block_out_channels = [128, 128, 256, 512, 512]
        
        MultiResNetModel = MultiHiddenResNetModel(block_out_channels, len(block_out_channels))
        MultiResNetModel.load_state_dict(torch.load(ckpt_path + 'MultiResNetModel.bin', map_location='cpu'), strict=False)
        MultiResNetModel.to('cuda', dtype=weight_dtype)

    



global cur_input_style
cur_input_style = "Sketch"
load_ckpt(cur_input_style)
cur_input_style = "GrayImage(ScreenStyle)"
load_ckpt(cur_input_style)
cur_input_style = None

@spaces.GPU
def fix_random_seeds(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)

def process_multi_images(files):
    images = [Image.open(file.name) for file in files]
    imgs = []
    for i, img in enumerate(images):
        imgs.append(img)
    return imgs 

@spaces.GPU
def extract_lines(image):
    src = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)

    rows = int(np.ceil(src.shape[0] / 16)) * 16
    cols = int(np.ceil(src.shape[1] / 16)) * 16

    patch = np.ones((1, 1, rows, cols), dtype="float32")
    patch[0, 0, 0:src.shape[0], 0:src.shape[1]] = src

    tensor = torch.from_numpy(patch).cuda()

    with torch.no_grad():
        y = line_model(tensor)

    yc = y.cpu().numpy()[0, 0, :, :]
    yc[yc > 255] = 255
    yc[yc < 0] = 0

    outimg = yc[0:src.shape[0], 0:src.shape[1]]
    outimg = outimg.astype(np.uint8)
    outimg = Image.fromarray(outimg)
    torch.cuda.empty_cache()
    return outimg

@spaces.GPU
def to_screen_image(input_image):
    global opt
    global ScreenModel
    input_image = input_image.convert('RGB')
    input_image = get_ScreenVAE_input(input_image, opt)
    h = input_image['h']
    w = input_image['w']
    ScreenModel.set_input(input_image)
    fake_B, fake_B2, SCR = ScreenModel.forward(AtoB=True)
    images=fake_B2[:,:,:h,:w]
    im = util.tensor2im(images)
    image_pil = Image.fromarray(im)
    torch.cuda.empty_cache()
    return image_pil

@spaces.GPU
def extract_line_image(query_image_, input_style, resolution):
    if resolution == "640x640":
        tar_width = 640
        tar_height = 640
    elif resolution == "512x800":
        tar_width = 512
        tar_height = 800
    elif resolution == "800x512":
        tar_width = 800
        tar_height = 512
    else:
        gr.Info("Unsupported resolution")

    query_image = process_image(query_image_, int(tar_width*1.5), int(tar_height*1.5))
    if input_style == "GrayImage(ScreenStyle)":
        extracted_line = to_screen_image(query_image)
        extracted_line = Image.blend(extracted_line.convert('L').convert('RGB'), query_image.convert('L').convert('RGB'), 0.5)
        input_context = extracted_line
    elif input_style == "Sketch":
        query_image = query_image.convert('L').convert('RGB')
        extracted_line = extract_lines(query_image)
        extracted_line = extracted_line.convert('L').convert('RGB')
        input_context = extracted_line
    torch.cuda.empty_cache()
    return input_context, extracted_line, input_context  

@spaces.GPU(duration=180)
def colorize_image(VAE_input, input_context, reference_images, resolution, seed, input_style, num_inference_steps):
    if VAE_input is None or input_context is None:
        gr.Info("Please preprocess the image first")
        raise ValueError("Please preprocess the image first")
    global cur_input_style
    global pipeline
    global MultiResNetModel
    if input_style != cur_input_style:
        gr.Info(f"Loading {input_style} model...")
        load_ckpt(input_style)
        cur_input_style = input_style
        gr.Info(f"{input_style} model loaded")
    reference_images = process_multi_images(reference_images)
    fix_random_seeds(seed)
    if resolution == "640x640":
        tar_width = 640
        tar_height = 640
    elif resolution == "512x800":
        tar_width = 512
        tar_height = 800
    elif resolution == "800x512":
        tar_width = 800
        tar_height = 512
    else:
        gr.Info("Unsupported resolution")
    validation_mask = Image.open('./assets/mask.png').convert('RGB').resize((tar_width*2, tar_height*2))
    gr.Info("Image retrieval in progress...")
    query_image_bw = process_image(input_context, int(tar_width), int(tar_height))
    query_image = query_image_bw.convert('RGB')
    query_image_vae = process_image(VAE_input, int(tar_width*1.5), int(tar_height*1.5))
    reference_images = [process_image(ref_image, tar_width, tar_height) for ref_image in reference_images]
    query_patches_pil = process_image_Q_varres(query_image, tar_width, tar_height)
    reference_patches_pil = []
    for reference_image in reference_images:
        reference_patches_pil += process_image_ref_varres(reference_image, tar_width, tar_height)
    combined_image = None
    with torch.no_grad():
        clip_img = image_processor(images=query_patches_pil, return_tensors="pt").pixel_values.to(image_encoder.device, dtype=image_encoder.dtype)
        query_embeddings = image_encoder(clip_img).image_embeds
        reference_patches_pil_gray = [rimg.convert('RGB').convert('RGB') for rimg in reference_patches_pil]
        clip_img = image_processor(images=reference_patches_pil_gray, return_tensors="pt").pixel_values.to(image_encoder.device, dtype=image_encoder.dtype)
        reference_embeddings = image_encoder(clip_img).image_embeds
        cosine_similarities = F.cosine_similarity(query_embeddings.unsqueeze(1), reference_embeddings.unsqueeze(0), dim=-1)
        sorted_indices = torch.argsort(cosine_similarities, descending=True, dim=1).tolist()
        top_k = 3
        top_k_indices = [cur_sortlist[:top_k] for cur_sortlist in sorted_indices]
        combined_image = Image.new('RGB', (tar_width * 2, tar_height * 2), 'white')
        combined_image.paste(query_image_bw.resize((tar_width, tar_height)), (tar_width//2, tar_height//2))
        idx_table = {0:[(1,0), (0,1), (0,0)], 1:[(1,3), (0,2),(0,3)], 2:[(2,0),(3,1), (3,0)], 3:[(2,3), (3,2),(3,3)]}
        for i in range(2):
            for j in range(2):
                idx_list = idx_table[i * 2 + j]
                for k in range(top_k):
                    ref_index = top_k_indices[i * 2 + j][k]
                    idx_y = idx_list[k][0]
                    idx_x = idx_list[k][1]
                    combined_image.paste(reference_patches_pil[ref_index].resize((tar_width//2-2, tar_height//2-2)), (tar_width//2 * idx_x + 1, tar_height//2 * idx_y + 1))
    gr.Info("Model inference in progress...")
    generator = torch.Generator(device='cuda').manual_seed(seed)
    image = pipeline(
        "manga", cond_image=combined_image, cond_mask=validation_mask, num_inference_steps=num_inference_steps, generator=generator
    ).images[0]
    gr.Info("Post-processing image...")
    with torch.no_grad():
        width, height = image.size
        new_width = width // 2
        new_height = height // 2
        left = (width - new_width) // 2
        top = (height - new_height) // 2
        right = left + new_width
        bottom = top + new_height
        center_crop = image.crop((left, top, right, bottom))
        up_img = center_crop.resize(query_image_vae.size)
        test_low_color = transform(up_img).unsqueeze(0).to('cuda', dtype=weight_dtype)
        query_image_vae = transform(query_image_vae).unsqueeze(0).to('cuda', dtype=weight_dtype)

        h_color, hidden_list_color = pipeline.vae._encode(test_low_color,return_dict = False, hidden_flag = True)
        h_bw, hidden_list_bw = pipeline.vae._encode(query_image_vae, return_dict = False, hidden_flag = True)

        hidden_list_double = [torch.cat((hidden_list_color[hidden_idx], hidden_list_bw[hidden_idx]), dim = 1) for hidden_idx in range(len(hidden_list_color))]


        hidden_list = MultiResNetModel(hidden_list_double)
        output = pipeline.vae._decode(h_color.sample(),return_dict = False, hidden_list = hidden_list)[0]

        output[output > 1] = 1
        output[output < -1] = -1
        high_res_image = Image.fromarray(((output[0] * 0.5 + 0.5).permute(1, 2, 0).detach().cpu().numpy() * 255).astype(np.uint8)).convert("RGB")
    gr.Info("Colorization complete!")
    torch.cuda.empty_cache()
    return high_res_image, up_img, image, query_image_bw

with gr.Blocks() as demo:
    gr.HTML(
    """
<div style="text-align: center;">
    <h1 style="text-align: center; font-size: 3em;">🎨 ColorFlow:</h1>
    <h3 style="text-align: center; font-size: 1.8em;">Retrieval-Augmented Image Sequence Colorization</h3>
    <p style="text-align: center; font-weight: bold;">
        <a href="https://zhuang2002.github.io/ColorFlow/">Project Page</a> | 
        <a href="https://arxiv.org/abs/2412.11815">ArXiv Preprint</a> | 
        <a href="https://github.com/TencentARC/ColorFlow">GitHub Repository</a>
    </p>
    <p style="text-align: center; font-weight: bold;">
        NOTE: Each time you switch the input style, the corresponding model will be reloaded, which may take some time. Please be patient.
    </p>
    <p style="text-align: left; font-size: 1.1em;">
        Welcome to the demo of <strong>ColorFlow</strong>. Follow the steps below to explore the capabilities of our model:
    </p>
</div>
<div style="text-align: left; margin: 0 auto;">
    <ol style="font-size: 1.1em;">
        <li>Choose input style: GrayImage(ScreenStyle) or Sketch.</li>
        <li>Upload your image: Use the 'Upload' button to select the image you want to colorize.</li>
        <li>Preprocess the image: Click the 'Preprocess' button to decolorize the image.</li>
        <li>Upload reference images: Upload multiple reference images to guide the colorization.</li>
        <li>Set sampling parameters (optional): Adjust the settings and click the <b>Colorize</b> button.</li>
    </ol>
    <p>
        ⏱️ <b>ZeroGPU Time Limit</b>: Hugging Face ZeroGPU has an inference time limit of 180 seconds. You may need to log in with a free account to use this demo. Large sampling steps might lead to timeout (GPU Abort). In that case, please consider logging in with a Pro account or running it on your local machine.
    </p>
</div>
<div style="text-align: center;">
    <p style="text-align: center; font-weight: bold;">
        注意:每次切换输入样式时,相应的模型将被重新加载,可能需要一些时间。请耐心等待。
    </p>
    <p style="text-align: left; font-size: 1.1em;">
        欢迎使用 <strong>ColorFlow</strong> 演示。请按照以下步骤探索我们模型的能力:
    </p>
</div>
<div style="text-align: left; margin: 0 auto;">
    <ol style="font-size: 1.1em;">
        <li>选择输入样式:灰度图(ScreenStyle)、线稿。</li>
        <li>上传您的图像:使用“上传”按钮选择要上色的图像。</li>
        <li>预处理图像:点击“预处理”按钮以去色图像。</li>
        <li>上传参考图像:上传多张参考图像以指导上色。</li>
        <li>设置采样参数(可选):调整设置并点击 <b>上色</b> 按钮。</li>
    </ol>
    <p>
        ⏱️ <b>ZeroGPU时间限制</b>:Hugging Face ZeroGPU 的推理时间限制为 180 秒。您可能需要使用免费帐户登录以使用此演示。大采样步骤可能会导致超时(GPU 中止)。在这种情况下,请考虑使用专业帐户登录或在本地计算机上运行。
    </p>
</div>
    """
)
    VAE_input = gr.State()
    input_context = gr.State()
    # example_loading = gr.State(value=None)
    
    with gr.Column():
        with gr.Row():
            input_style = gr.Radio(["GrayImage(ScreenStyle)", "Sketch"], label="Input Style", value="GrayImage(ScreenStyle)")
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(type="pil", label="Image to Colorize")
                resolution = gr.Radio(["640x640", "512x800", "800x512"], label="Select Resolution(Width*Height)", value="640x640")
                extract_button = gr.Button("Preprocess (Decolorize)")
            extracted_image = gr.Image(type="pil", label="Decolorized Result")
        with gr.Row():
            reference_images = gr.Files(label="Reference Images (Upload multiple)", file_count="multiple")
            with gr.Column():
                output_gallery = gr.Gallery(label="Colorization Results", type="pil")
                seed = gr.Slider(label="Random Seed", minimum=0, maximum=100000, value=0, step=1)
                num_inference_steps = gr.Slider(label="Inference Steps", minimum=4, maximum=100, value=10, step=1)
                colorize_button = gr.Button("Colorize")
    
    # progress_text = gr.Textbox(label="Progress", interactive=False)
    
    
    extract_button.click(
        extract_line_image, 
        inputs=[input_image, input_style, resolution], 
        outputs=[extracted_image, VAE_input, input_context]
    )
    colorize_button.click(
        colorize_image, 
        inputs=[VAE_input, input_context, reference_images, resolution, seed, input_style, num_inference_steps], 
        outputs=output_gallery
    )

    with gr.Column():
        gr.Markdown("### Quick Examples")
        gr.Examples(
            examples=examples,
            inputs=[input_image, reference_images, input_style, resolution, seed, num_inference_steps],
            label="Examples",
            examples_per_page=6,
        )
    gr.HTML('<a href="https://github.com/TencentARC/ColorFlow"><img src="https://img.shields.io/github/stars/TencentARC/ColorFlow" alt="GitHub Stars"></a>')
    gr.Markdown(article)
    # gr.HTML(
    #     '<a href="https://github.com/TencentARC/ColorFlow"><img src="https://img.shields.io/github/stars/TencentARC/ColorFlow" alt="GitHub Stars"></a>'
    # )

    
demo.launch()