Spaces:
Running
on
Zero
Running
on
Zero
from __future__ import print_function | |
import torch | |
import numpy as np | |
from PIL import Image | |
import os | |
import pickle | |
def tensor2im(input_image, imtype=np.uint8): | |
""""Convert a Tensor array into a numpy image array. | |
Parameters: | |
input_image (tensor) -- the input image tensor array | |
imtype (type) -- the desired type of the converted numpy array | |
""" | |
if not isinstance(input_image, np.ndarray): | |
if isinstance(input_image, torch.Tensor): # get the data from a variable | |
image_tensor = input_image.data | |
else: | |
return input_image | |
image_numpy = image_tensor[0].cpu().float().numpy() # convert it into a numpy array | |
if image_numpy.shape[0] == 1: # grayscale to RGB | |
image_numpy = np.tile(image_numpy, (3, 1, 1)) | |
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling | |
else: # if it is a numpy array, do nothing | |
image_numpy = input_image | |
return image_numpy.astype(imtype) | |
def tensor2vec(vector_tensor): | |
numpy_vec = vector_tensor.data.cpu().numpy() | |
if numpy_vec.ndim == 4: | |
return numpy_vec[:, :, 0, 0] | |
else: | |
return numpy_vec | |
def pickle_load(file_name): | |
data = None | |
with open(file_name, 'rb') as f: | |
data = pickle.load(f) | |
return data | |
def pickle_save(file_name, data): | |
with open(file_name, 'wb') as f: | |
pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL) | |
def diagnose_network(net, name='network'): | |
"""Calculate and print the mean of average absolute(gradients) | |
Parameters: | |
net (torch network) -- Torch network | |
name (str) -- the name of the network | |
""" | |
mean = 0.0 | |
count = 0 | |
for param in net.parameters(): | |
if param.grad is not None: | |
mean += torch.mean(torch.abs(param.grad.data)) | |
count += 1 | |
if count > 0: | |
mean = mean / count | |
print(name) | |
print(mean) | |
def interp_z(z0, z1, num_frames, interp_mode='linear'): | |
zs = [] | |
if interp_mode == 'linear': | |
for n in range(num_frames): | |
ratio = n / float(num_frames - 1) | |
z_t = (1 - ratio) * z0 + ratio * z1 | |
zs.append(z_t[np.newaxis, :]) | |
zs = np.concatenate(zs, axis=0).astype(np.float32) | |
if interp_mode == 'slerp': | |
z0_n = z0 / (np.linalg.norm(z0) + 1e-10) | |
z1_n = z1 / (np.linalg.norm(z1) + 1e-10) | |
omega = np.arccos(np.dot(z0_n, z1_n)) | |
sin_omega = np.sin(omega) | |
if sin_omega < 1e-10 and sin_omega > -1e-10: | |
zs = interp_z(z0, z1, num_frames, interp_mode='linear') | |
else: | |
for n in range(num_frames): | |
ratio = n / float(num_frames - 1) | |
z_t = np.sin((1 - ratio) * omega) / sin_omega * z0 + np.sin(ratio * omega) / sin_omega * z1 | |
zs.append(z_t[np.newaxis, :]) | |
zs = np.concatenate(zs, axis=0).astype(np.float32) | |
return zs | |
def save_image(image_numpy, image_path): | |
"""Save a numpy image to the disk | |
Parameters: | |
image_numpy (numpy array) -- input numpy array | |
image_path (str) -- the path of the image | |
""" | |
image_pil = Image.fromarray(image_numpy) | |
image_pil.save(image_path) | |
def print_numpy(x, val=True, shp=False): | |
"""Print the mean, min, max, median, std, and size of a numpy array | |
Parameters: | |
val (bool) -- if print the values of the numpy array | |
shp (bool) -- if print the shape of the numpy array | |
""" | |
x = x.astype(np.float64) | |
if shp: | |
print('shape,', x.shape) | |
if val: | |
x = x.flatten() | |
print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( | |
np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) | |
def mkdirs(paths): | |
"""create empty directories if they don't exist | |
Parameters: | |
paths (str list) -- a list of directory paths | |
""" | |
if isinstance(paths, list) and not isinstance(paths, str): | |
for path in paths: | |
mkdir(path) | |
else: | |
mkdir(paths) | |
def mkdir(path): | |
"""create a single empty directory if it didn't exist | |
Parameters: | |
path (str) -- a single directory path | |
""" | |
if not os.path.exists(path): | |
os.makedirs(path, exist_ok=True) | |