jhaozhuang
app
77771e4
raw
history blame
10.9 kB
import numpy as np
import os
import sys
import ntpath
import time
from . import util
from . import html
from subprocess import Popen, PIPE
import cv2
# if sys.version_info[0] == 2:
# VisdomExceptionBase = Exception
# else:
# VisdomExceptionBase = ConnectionError
def save_images(webpage, images, names, image_path, aspect_ratio=1.0, width=256):
"""Save images to the disk.
Parameters:
webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details)
images (numpy array list) -- a list of numpy array that stores images
names (str list) -- a str list stores the names of the images above
image_path (str) -- the string is used to create image paths
aspect_ratio (float) -- the aspect ratio of saved images
width (int) -- the images will be resized to width x width
This function will save images stored in 'visuals' to the HTML file specified by 'webpage'.
"""
image_dir = webpage.get_image_dir()
name = ntpath.basename(image_path)
webpage.add_header(name)
ims, txts, links = [], [], []
for label, im_data in zip(names, images):
im = util.tensor2im(im_data)
image_name = '%s_%s.jpg' % (name, label)
save_path = os.path.join(image_dir, image_name)
h, w, _ = im.shape
if aspect_ratio > 1.0:
im = cv2.resize(im, (h, int(w * aspect_ratio)), interpolation=cv2.INTER_CUBIC)
if aspect_ratio < 1.0:
im = cv2.resize(im, (int(h / aspect_ratio), w), interpolation=cv2.INTER_CUBIC)
util.save_image(im, save_path)
ims.append(image_name)
txts.append(label)
links.append(image_name)
webpage.add_images(ims, txts, links, width=width)
class Visualizer():
"""This class includes several functions that can display/save images and print/save logging information.
It uses a Python library 'visdom' for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images.
"""
def __init__(self, opt):
"""Initialize the Visualizer class
Parameters:
opt -- stores all the experiment flags; needs to be a subclass of BaseOptions
Step 1: Cache the training/test options
Step 2: connect to a visdom server
Step 3: create an HTML object for saveing HTML filters
Step 4: create a logging file to store training losses
"""
self.opt = opt # cache the option
self.display_id = opt.display_id
self.use_html = opt.isTrain and not opt.no_html
self.win_size = opt.display_winsize
self.name = opt.name
self.port = opt.display_port
self.saved = False
# if self.display_id > 0: # connect to a visdom server given <display_port> and <display_server>
# import visdom
# self.ncols = opt.display_ncols
# self.vis = visdom.Visdom(server=opt.display_server, port=opt.display_port, env=opt.display_env)
# if not self.vis.check_connection():
# self.create_visdom_connections()
if self.use_html: # create an HTML object at <checkpoints_dir>/web/; images will be saved under <checkpoints_dir>/web/images/
self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
self.img_dir = os.path.join(self.web_dir, 'images')
print('create web directory %s...' % self.web_dir)
util.mkdirs([self.web_dir, self.img_dir])
# create a logging file to store training losses
self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt')
with open(self.log_name, "a") as log_file:
now = time.strftime("%c")
log_file.write('================ Training Loss (%s) ================\n' % now)
def reset(self):
"""Reset the self.saved status"""
self.saved = False
def create_visdom_connections(self):
"""If the program could not connect to Visdom server, this function will start a new server at port < self.port > """
cmd = sys.executable + ' -m visdom.server -p %d &>/dev/null &' % self.port
print('\n\nCould not connect to Visdom server. \n Trying to start a server....')
print('Command: %s' % cmd)
Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
def display_current_results(self, visuals, epoch, save_result):
"""Display current results on visdom; save current results to an HTML file.
Parameters:
visuals (OrderedDict) - - dictionary of images to display or save
epoch (int) - - the current epoch
save_result (bool) - - if save the current results to an HTML file
"""
# if self.display_id > 0: # show images in the browser using visdom
# ncols = self.ncols
# if ncols > 0: # show all the images in one visdom panel
# ncols = min(ncols, len(visuals))
# h, w = next(iter(visuals.values())).shape[:2]
# table_css = """<style>
# table {border-collapse: separate; border-spacing: 4px; white-space: nowrap; text-align: center}
# table td {width: % dpx; height: % dpx; padding: 4px; outline: 4px solid black}
# </style>""" % (w, h) # create a table css
# # create a table of images.
# title = self.name
# label_html = ''
# label_html_row = ''
# images = []
# idx = 0
# for label, image in visuals.items():
# image_numpy = util.tensor2im(image)
# label_html_row += '<td>%s</td>' % label
# images.append(image_numpy.transpose([2, 0, 1]))
# idx += 1
# if idx % ncols == 0:
# label_html += '<tr>%s</tr>' % label_html_row
# label_html_row = ''
# white_image = np.ones_like(image_numpy.transpose([2, 0, 1])) * 255
# while idx % ncols != 0:
# images.append(white_image)
# label_html_row += '<td></td>'
# idx += 1
# if label_html_row != '':
# label_html += '<tr>%s</tr>' % label_html_row
# try:
# self.vis.images(images, nrow=ncols, win=self.display_id + 1,
# padding=2, opts=dict(title=title + ' images'))
# label_html = '<table>%s</table>' % label_html
# self.vis.text(table_css + label_html, win=self.display_id + 2,
# opts=dict(title=title + ' labels'))
# except VisdomExceptionBase:
# self.create_visdom_connections()
# else: # show each image in a separate visdom panel;
# idx = 1
# try:
# for label, image in visuals.items():
# image_numpy = util.tensor2im(image)
# self.vis.image(image_numpy.transpose([2, 0, 1]), opts=dict(title=label),
# win=self.display_id + idx)
# idx += 1
# except VisdomExceptionBase:
# self.create_visdom_connections()
if self.use_html and (save_result or not self.saved): # save images to an HTML file if they haven't been saved.
self.saved = True
# save images to the disk
for label, image in visuals.items():
image_numpy = util.tensor2im(image)
img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label))
util.save_image(image_numpy, img_path)
# update website
webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=1)
for n in range(epoch, 0, -1):
webpage.add_header('epoch [%d]' % n)
ims, txts, links = [], [], []
for label, image_numpy in visuals.items():
image_numpy = util.tensor2im(image)
img_path = 'epoch%.3d_%s.png' % (n, label)
ims.append(img_path)
txts.append(label)
links.append(img_path)
webpage.add_images(ims, txts, links, width=self.win_size)
webpage.save()
def plot_current_losses(self, epoch, counter_ratio, losses):
"""display the current losses on visdom display: dictionary of error labels and values
Parameters:
epoch (int) -- current epoch
counter_ratio (float) -- progress (percentage) in the current epoch, between 0 to 1
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
"""
if not hasattr(self, 'plot_data'):
self.plot_data = {'X': [], 'Y': [], 'legend': list(losses.keys())}
self.plot_data['X'].append(epoch + counter_ratio)
self.plot_data['Y'].append([losses[k] for k in self.plot_data['legend']])
# try:
# self.vis.line(
# X=np.stack([np.array(self.plot_data['X'])] * len(self.plot_data['legend']), 1),
# Y=np.array(self.plot_data['Y']),
# opts={
# 'title': self.name + ' loss over time',
# 'legend': self.plot_data['legend'],
# 'xlabel': 'epoch',
# 'ylabel': 'loss'},
# win=self.display_id)
# except VisdomExceptionBase:
# self.create_visdom_connections()
# losses: same format as |losses| of plot_current_losses
def print_current_losses(self, epoch, iters, losses, t_comp, t_data):
"""print current losses on console; also save the losses to the disk
Parameters:
epoch (int) -- current epoch
iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch)
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
t_comp (float) -- computational time per data point (normalized by batch_size)
t_data (float) -- data loading time per data point (normalized by batch_size)
"""
message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, iters, t_comp, t_data)
for k, v in losses.items():
message += '%s: %.3f ' % (k, v)
print(message) # print the message
with open(self.log_name, "a") as log_file:
log_file.write('%s\n' % message) # save the message