Spaces:
Running
on
Zero
Running
on
Zero
from typing import List, Optional, Tuple, Union | |
import torch | |
from diffusers import DiffusionPipeline | |
from diffusers.configuration_utils import ConfigMixin | |
from diffusers.pipelines.pipeline_utils import ImagePipelineOutput | |
from diffusers.schedulers.scheduling_utils import SchedulerMixin | |
class IADBScheduler(SchedulerMixin, ConfigMixin): | |
""" | |
IADBScheduler is a scheduler for the Iterative α-(de)Blending denoising method. It is simple and minimalist. | |
For more details, see the original paper: https://arxiv.org/abs/2305.03486 and the blog post: https://ggx-research.github.io/publication/2023/05/10/publication-iadb.html | |
""" | |
def step( | |
self, | |
model_output: torch.Tensor, | |
timestep: int, | |
x_alpha: torch.Tensor, | |
) -> torch.Tensor: | |
""" | |
Predict the sample at the previous timestep by reversing the ODE. Core function to propagate the diffusion | |
process from the learned model outputs (most often the predicted noise). | |
Args: | |
model_output (`torch.Tensor`): direct output from learned diffusion model. It is the direction from x0 to x1. | |
timestep (`float`): current timestep in the diffusion chain. | |
x_alpha (`torch.Tensor`): x_alpha sample for the current timestep | |
Returns: | |
`torch.Tensor`: the sample at the previous timestep | |
""" | |
if self.num_inference_steps is None: | |
raise ValueError( | |
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
) | |
alpha = timestep / self.num_inference_steps | |
alpha_next = (timestep + 1) / self.num_inference_steps | |
d = model_output | |
x_alpha = x_alpha + (alpha_next - alpha) * d | |
return x_alpha | |
def set_timesteps(self, num_inference_steps: int): | |
self.num_inference_steps = num_inference_steps | |
def add_noise( | |
self, | |
original_samples: torch.Tensor, | |
noise: torch.Tensor, | |
alpha: torch.Tensor, | |
) -> torch.Tensor: | |
return original_samples * alpha + noise * (1 - alpha) | |
def __len__(self): | |
return self.config.num_train_timesteps | |
class IADBPipeline(DiffusionPipeline): | |
r""" | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Parameters: | |
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of | |
[`DDPMScheduler`], or [`DDIMScheduler`]. | |
""" | |
def __init__(self, unet, scheduler): | |
super().__init__() | |
self.register_modules(unet=unet, scheduler=scheduler) | |
def __call__( | |
self, | |
batch_size: int = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
num_inference_steps: int = 50, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
) -> Union[ImagePipelineOutput, Tuple]: | |
r""" | |
Args: | |
batch_size (`int`, *optional*, defaults to 1): | |
The number of images to generate. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is | |
True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. | |
""" | |
# Sample gaussian noise to begin loop | |
if isinstance(self.unet.config.sample_size, int): | |
image_shape = ( | |
batch_size, | |
self.unet.config.in_channels, | |
self.unet.config.sample_size, | |
self.unet.config.sample_size, | |
) | |
else: | |
image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
image = torch.randn(image_shape, generator=generator, device=self.device, dtype=self.unet.dtype) | |
# set step values | |
self.scheduler.set_timesteps(num_inference_steps) | |
x_alpha = image.clone() | |
for t in self.progress_bar(range(num_inference_steps)): | |
alpha = t / num_inference_steps | |
# 1. predict noise model_output | |
model_output = self.unet(x_alpha, torch.tensor(alpha, device=x_alpha.device)).sample | |
# 2. step | |
x_alpha = self.scheduler.step(model_output, t, x_alpha) | |
image = (x_alpha * 0.5 + 0.5).clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).numpy() | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |