File size: 8,871 Bytes
8e25beb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c778773
8e25beb
 
 
 
 
 
 
 
 
 
 
c778773
8e25beb
 
 
 
c778773
 
8e25beb
 
c778773
8e25beb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from typing import *
import numpy as np
import torch
import utils3d
import nvdiffrast.torch as dr
from tqdm import tqdm
import trimesh
import trimesh.visual
import xatlas
import cv2
from PIL import Image
import fast_simplification


def parametrize_mesh(vertices: np.array, faces: np.array):
    """
    Parametrize a mesh to a texture space, using xatlas.
    Args:
        vertices (np.array): Vertices of the mesh. Shape (V, 3).
        faces (np.array): Faces of the mesh. Shape (F, 3).
    """

    vmapping, indices, uvs = xatlas.parametrize(vertices, faces)

    vertices = vertices[vmapping]
    faces = indices

    return vertices, faces, uvs


def bake_texture(
    vertices: np.array,
    faces: np.array,
    uvs: np.array,
    observations: List[np.array],
    masks: List[np.array],
    extrinsics: List[np.array],
    intrinsics: List[np.array],
    texture_size: int = 2048,
    near: float = 0.1,
    far: float = 10.0,
    mode: Literal['fast', 'opt'] = 'opt',
    lambda_tv: float = 1e-2,
    verbose: bool = False,
):
    """
    Bake texture to a mesh from multiple observations.
    Args:
        vertices (np.array): Vertices of the mesh. Shape (V, 3).
        faces (np.array): Faces of the mesh. Shape (F, 3).
        uvs (np.array): UV coordinates of the mesh. Shape (V, 2).
        observations (List[np.array]): List of observations. Each observation is a 2D image. Shape (H, W, 3).
        masks (List[np.array]): List of masks. Each mask is a 2D image. Shape (H, W).
        extrinsics (List[np.array]): List of extrinsics. Shape (4, 4).
        intrinsics (List[np.array]): List of intrinsics. Shape (3, 3).
        texture_size (int): Size of the texture.
        near (float): Near plane of the camera.
        far (float): Far plane of the camera.
        mode (Literal['fast', 'opt']): Mode of texture baking.
        lambda_tv (float): Weight of total variation loss in optimization.
        verbose (bool): Whether to print progress.
    """
    vertices = torch.tensor(vertices).float().cuda()
    faces = torch.tensor(faces.astype(np.int32)).cuda()
    uvs = torch.tensor(uvs).float().cuda()
    observations = [torch.tensor(obs).float().cuda() for obs in observations]
    masks = [torch.tensor(m>1e-2).bool().cuda() for m in masks]
    views = [utils3d.torch.extrinsics_to_view(torch.tensor(extr).float().cuda()) for extr in extrinsics]
    projections = [utils3d.torch.intrinsics_to_perspective(torch.tensor(intr).float().cuda(), near, far) for intr in intrinsics]

    if mode == 'fast':
        texture = torch.zeros((texture_size * texture_size, 3), dtype=torch.float32).cuda()
        texture_weights = torch.zeros((texture_size * texture_size), dtype=torch.float32).cuda()
        rastctx = utils3d.torch.RastContext(backend='cuda')
        for observation, view, projection in tqdm(zip(observations, views, projections), total=len(observations), disable=not verbose, desc='Texture baking (fast)'):
            with torch.no_grad():
                rast = utils3d.torch.rasterize_triangle_faces(
                    rastctx, vertices[None], faces, observation.shape[1], observation.shape[0], uv=uvs[None], view=view, projection=projection
                )
                uv_map = rast['uv'][0].detach().flip(0)
                mask = rast['mask'][0].detach().bool() & masks[0]
            
            # nearest neighbor interpolation
            uv_map = (uv_map * texture_size).floor().long()
            obs = observation[mask]
            uv_map = uv_map[mask]
            idx = uv_map[:, 0] + (texture_size - uv_map[:, 1] - 1) * texture_size
            texture = texture.scatter_add(0, idx.view(-1, 1).expand(-1, 3), obs)
            texture_weights = texture_weights.scatter_add(0, idx, torch.ones((obs.shape[0]), dtype=torch.float32, device=texture.device))

        mask = texture_weights > 0
        texture[mask] /= texture_weights[mask][:, None]
        texture = np.clip(texture.reshape(texture_size, texture_size, 3).cpu().numpy() * 255, 0, 255).astype(np.uint8)

        # inpaint
        mask = (texture_weights == 0).cpu().numpy().astype(np.uint8).reshape(texture_size, texture_size)
        texture = cv2.inpaint(texture, mask, 3, cv2.INPAINT_TELEA)

    elif mode == 'opt':
        rastctx = utils3d.torch.RastContext(backend='cuda')
        observations = [observations.flip(0) for observations in observations]
        masks = [m.flip(0) for m in masks]
        _uv = []
        _uv_dr = []
        for observation, view, projection in tqdm(zip(observations, views, projections), total=len(views), disable=not verbose, desc='Texture baking (opt): UV'):
            with torch.no_grad():
                rast = utils3d.torch.rasterize_triangle_faces(
                    rastctx, vertices[None], faces, observation.shape[1], observation.shape[0], uv=uvs[None], view=view, projection=projection
                )
                _uv.append(rast['uv'].detach())
                _uv_dr.append(rast['uv_dr'].detach())

        texture = torch.nn.Parameter(torch.zeros((1, texture_size, texture_size, 3), dtype=torch.float32).cuda())
        optimizer = torch.optim.Adam([texture], betas=(0.5, 0.9), lr=1e-2)

        def exp_anealing(optimizer, step, total_steps, start_lr, end_lr):
            return start_lr * (end_lr / start_lr) ** (step / total_steps)

        def cosine_anealing(optimizer, step, total_steps, start_lr, end_lr):
            return end_lr + 0.5 * (start_lr - end_lr) * (1 + np.cos(np.pi * step / total_steps))
        
        def tv_loss(texture):
            return torch.nn.functional.l1_loss(texture[:, :-1, :, :], texture[:, 1:, :, :]) + \
                   torch.nn.functional.l1_loss(texture[:, :, :-1, :], texture[:, :, 1:, :])
    
        total_steps = 2500
        with tqdm(total=total_steps, disable=not verbose, desc='Texture baking (opt): optimizing') as pbar:
            for step in range(total_steps):
                optimizer.zero_grad()
                selected = np.random.randint(0, len(views))
                uv, uv_dr, observation, mask = _uv[selected], _uv_dr[selected], observations[selected], masks[selected]
                render = dr.texture(texture, uv, uv_dr)[0]
                loss = torch.nn.functional.l1_loss(render[mask], observation[mask])
                if lambda_tv > 0:
                    loss += lambda_tv * tv_loss(texture)
                loss.backward()
                optimizer.step()
                # annealing
                optimizer.param_groups[0]['lr'] = cosine_anealing(optimizer, step, total_steps, 1e-2, 1e-5)
                pbar.set_postfix({'loss': loss.item()})
                pbar.update()
        texture = np.clip(texture[0].flip(0).detach().cpu().numpy() * 255, 0, 255).astype(np.uint8)
        mask = 1 - utils3d.torch.rasterize_triangle_faces(
            rastctx, (uvs * 2 - 1)[None], faces, texture_size, texture_size
        )['mask'][0].detach().cpu().numpy().astype(np.uint8)
        texture = cv2.inpaint(texture, mask, 3, cv2.INPAINT_TELEA)
    else:
        raise ValueError(f'Unknown mode: {mode}')

    return texture


def optimize_mesh(
    mesh,
    images: torch.Tensor,
    masks: torch.Tensor,
    extrinsics: torch.Tensor,
    intrinsics: torch.Tensor,
    simplify: float = 0.95,
    texture_size: int = 1024,
    verbose: bool = False,
) -> trimesh.Trimesh:
    """
    Convert a generated asset to a glb file.
    Args:
        mesh (trimesh.Trimesh): Extracted mesh.
        simplify (float): Ratio of faces to remove in simplification.
        texture_size (int): Size of the texture.
        verbose (bool): Whether to print progress.
    """
    vertices = np.array(mesh.vertices).astype(float)
    faces = np.array(mesh.faces).astype(int)

    # mesh simplification
    max_faces = 30000
    mesh_reduction = max(1 - max_faces / faces.shape[0], simplify)
    vertices, faces = fast_simplification.simplify(
        vertices, faces, target_reduction=mesh_reduction)
    
    # parametrize mesh
    vertices, faces, uvs = parametrize_mesh(vertices, faces)

    # bake texture
    images = [images[i].cpu().numpy() for i in range(len(images))]
    masks = [masks[i].cpu().numpy() for i in range(len(masks))]
    extrinsics = [extrinsics[i].cpu().numpy() for i in range(len(extrinsics))]
    intrinsics = [intrinsics[i].cpu().numpy() for i in range(len(intrinsics))]
    texture = bake_texture(
        vertices.astype(float), faces.astype(float), uvs,
        images, masks, extrinsics, intrinsics,
        texture_size=texture_size, 
        mode='opt',
        lambda_tv=0.01,
        verbose=verbose
    )
    texture = Image.fromarray(texture)

    # rotate mesh
    vertices = vertices.astype(float) @ np.array([[-1, 0, 0], [0, 0, 1], [0, 1, 0]]).astype(float)
    mesh = trimesh.Trimesh(vertices, faces, visual=trimesh.visual.TextureVisuals(uv=uvs, image=texture))
    return mesh