Spaces:
Running
on
A10G
Running
on
A10G
File size: 9,273 Bytes
448d919 6bec03c 448d919 0ba1071 910b076 448d919 910b076 ae76338 ebd0807 092ceda ebd0807 910b076 ebd0807 092ceda ebd0807 910b076 ebd0807 092ceda ebd0807 910b076 ebd0807 092ceda ebd0807 910b076 ebd0807 092ceda ebd0807 910b076 ebd0807 092ceda ebd0807 910b076 ebd0807 092ceda ebd0807 910b076 ebd0807 ae76338 ebd0807 910b076 ae76338 ebd0807 811ffbe ae76338 910b076 ebd0807 448d919 910b076 edb91ec 448d919 112de75 448d919 112de75 448d919 ae76338 edb2f4b ae76338 edb2f4b ae76338 448d919 a679a71 0ba1071 448d919 edb2f4b 59db96e 448d919 0ba1071 ae76338 448d919 5898cfd 448d919 8513dc8 448d919 6bec03c 448d919 206fc98 a679a71 206fc98 ae76338 206fc98 448d919 ae76338 448d919 21e8f52 448d919 21e8f52 448d919 21e8f52 448d919 21e8f52 448d919 6759e22 ae76338 6759e22 910b076 0df770e ae76338 0df770e 910b076 6759e22 448d919 5898cfd 448d919 59db96e 448d919 6759e22 ae76338 448d919 651aca2 448d919 ae76338 448d919 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
#!/usr/bin/env python
import os
import random
import gradio as gr
import numpy as np
import PIL.Image
import torch
import torchvision.transforms.functional as TF
from diffusers import (
AutoencoderKL,
EulerAncestralDiscreteScheduler,
StableDiffusionXLAdapterPipeline,
T2IAdapter,
)
DESCRIPTION = "# T2I-Adapter-SDXL Sketch"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
style_list = [
{
"name": "(No style)",
"prompt": "{prompt}",
"negative_prompt": "",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "3D Model",
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Digital Art",
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly",
},
{
"name": "Photographic",
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Pixel art",
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
},
{
"name": "Manga",
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n + negative
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
adapter = T2IAdapter.from_pretrained(
"TencentARC/t2i-adapter-sketch-sdxl-1.0", torch_dtype=torch.float16, variant="fp16"
)
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
model_id,
vae=AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16),
adapter=adapter,
scheduler=scheduler,
torch_dtype=torch.float16,
variant="fp16",
)
pipe.to(device)
else:
pipe = None
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def run(
image: PIL.Image.Image,
prompt: str,
negative_prompt: str,
style_name: str = DEFAULT_STYLE_NAME,
num_steps: int = 25,
guidance_scale: float = 5,
adapter_conditioning_scale: float = 0.8,
adapter_conditioning_factor: float = 0.8,
seed: int = 0,
progress=gr.Progress(track_tqdm=True),
) -> PIL.Image.Image:
image = image.convert("RGB")
image = TF.to_tensor(image) > 0.5
image = TF.to_pil_image(image.to(torch.float32))
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
generator = torch.Generator(device=device).manual_seed(seed)
out = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=image,
num_inference_steps=num_steps,
generator=generator,
guidance_scale=guidance_scale,
adapter_conditioning_scale=adapter_conditioning_scale,
adapter_conditioning_factor=adapter_conditioning_factor,
).images[0]
return out
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Row():
with gr.Column():
with gr.Group():
image = gr.Image(
source="canvas",
tool="sketch",
type="pil",
image_mode="L",
invert_colors=True,
shape=(1024, 1024),
brush_radius=4,
height=600,
)
prompt = gr.Textbox(label="Prompt")
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
run_button = gr.Button("Run")
with gr.Accordion("Advanced options", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
value=" extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured",
)
num_steps = gr.Slider(
label="Number of steps",
minimum=1,
maximum=50,
step=1,
value=25,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=5,
)
adapter_conditioning_scale = gr.Slider(
label="Adapter conditioning scale",
minimum=0.5,
maximum=1,
step=0.1,
value=0.8,
)
adapter_conditioning_factor = gr.Slider(
label="Adapter conditioning factor",
info="Fraction of timesteps for which adapter should be applied",
minimum=0.5,
maximum=1,
step=0.1,
value=0.8,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column():
result = gr.Image(label="Result", height=600)
inputs = [
image,
prompt,
negative_prompt,
style,
num_steps,
guidance_scale,
adapter_conditioning_scale,
adapter_conditioning_factor,
seed,
]
prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=run,
inputs=inputs,
outputs=result,
api_name=False,
)
negative_prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=run,
inputs=inputs,
outputs=result,
api_name=False,
)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=run,
inputs=inputs,
outputs=result,
api_name=False,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|