File size: 8,106 Bytes
7d71416
df909ae
7e110c9
 
f842416
 
 
7e110c9
93cf637
7d71416
 
 
 
 
 
 
 
 
 
 
 
bb00b3a
 
7d71416
 
 
 
bb00b3a
7d71416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdf52cc
 
 
7d71416
 
 
6c4a90b
9c4157c
08b65b3
7d71416
17ad30c
 
7d71416
 
bb00b3a
 
aa4548a
08b65b3
 
 
 
 
 
 
 
 
7d71416
 
 
 
bb00b3a
fdf52cc
 
 
7d71416
 
 
 
 
 
 
 
 
 
 
 
 
 
fdf52cc
7d71416
bb00b3a
 
7d71416
 
 
 
 
 
4a4d1b5
7d71416
 
0928baf
7d71416
bb00b3a
 
7d71416
 
4a4d1b5
7d71416
 
 
 
 
 
 
 
 
 
 
 
 
 
85ba7c8
 
bb00b3a
7d71416
85ba7c8
7d71416
 
 
 
 
 
 
aa4548a
08b65b3
 
 
 
 
 
 
 
 
 
7d71416
4a4d1b5
7d71416
041b9f4
 
 
 
7d71416
 
 
 
 
 
08b65b3
7d71416
f6d38e4
 
7d71416
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import gradio as gr
 
description = """Do you have a long document and a bunch of questions that can be answered given the data in this file? 
Fear not for this demo is for you. 
Upload your pdf, ask your questions and wait for the magic to happen.
DISCLAIMER: I do no have idea what happens to the pdfs that you upload and who has access to them so make sure there is nothing confidential there. 
"""
title = "QA answering from a pdf."

import numpy as np
import time
import hashlib
import torch
from transformers import AutoTokenizer, AutoModel, AutoModelForQuestionAnswering, pipeline
from tqdm import tqdm
import os
device = "cuda:0" if torch.cuda.is_available() else "cpu"
import textract
from scipy.special import softmax
import pandas as pd
from datetime import datetime


tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1")
model = AutoModel.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1").to(device).eval()
tokenizer_ans = AutoTokenizer.from_pretrained("deepset/roberta-large-squad2")
model_ans = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-large-squad2").to(device).eval()

if device == 'cuda:0':
    pipe = pipeline("question-answering",model_ans,tokenizer =tokenizer_ans,device = 0)
else:
    pipe = pipeline("question-answering",model_ans,tokenizer =tokenizer_ans)
    
def cls_pooling(model_output):
    return model_output.last_hidden_state[:,0]

def encode_query(query):
    encoded_input = tokenizer(query, truncation=True, return_tensors='pt').to(device)

    with torch.no_grad():
        model_output = model(**encoded_input, return_dict=True)

    embeddings = cls_pooling(model_output)

    return embeddings.cpu()


def encode_docs(docs,maxlen = 64, stride = 32):
    encoded_input = []
    embeddings = []
    spans = []
    file_names = []
    name, text = docs
    
    text = text.split(" ")
    if len(text) < maxlen:
        text = " ".join(text)
        
        encoded_input.append(tokenizer(temp_text, return_tensors='pt', truncation = True).to(device))
        spans.append(temp_text)
        file_names.append(name)

    else:
        num_iters = int(len(text)/maxlen)+1
        for i in range(num_iters):
            if i == 0:
                temp_text = " ".join(text[i*maxlen:(i+1)*maxlen+stride])
            else:
                temp_text = " ".join(text[(i-1)*maxlen:(i)*maxlen][-stride:] + text[i*maxlen:(i+1)*maxlen])

            encoded_input.append(tokenizer(temp_text, return_tensors='pt', truncation = True).to(device))
            spans.append(temp_text)
            file_names.append(name)

    with torch.no_grad():
        for encoded in tqdm(encoded_input): 
            model_output = model(**encoded, return_dict=True)
            embeddings.append(cls_pooling(model_output))
    
    embeddings = np.float32(torch.stack(embeddings).transpose(0, 1).cpu())
    
    np.save("emb_{}.npy".format(name),dict(zip(list(range(len(embeddings))),embeddings))) 
    np.save("spans_{}.npy".format(name),dict(zip(list(range(len(spans))),spans)))
    np.save("file_{}.npy".format(name),dict(zip(list(range(len(file_names))),file_names)))
    
    return embeddings, spans, file_names
   
def predict(query,data):
    name_to_save = data.name.split("/")[-1].split(".")[0][:-8]
    k=20
    st = str([query,name_to_save])
    st_hashed = str(hashlib.sha256(st.encode()).hexdigest()) #just to speed up examples load
    hist = st + " " + st_hashed 
    now = datetime.now()
    current_time = now.strftime("%H:%M:%S")
    
    try: #if the same question was already asked for this document, upload question and answer
        df = pd.read_csv("{}.csv".format(hash(st)))
        list_outputs = []
        for i in range(k):
            temp = [df.iloc[n] for n in range(k)][i]
            text = ''
            text += 'PROBABILITIES: '+ temp.Probabilities + '\n\n' 
            text += 'ANSWER: ' +temp.Answer + '\n\n' 
            text += 'PASSAGE: '+temp.Passage + '\n\n' 
            list_outputs.append(text)
        return list_outputs
    except Exception as e:
        print(e)
        print(st)

    if name_to_save+".txt" in os.listdir(): #if the document was already used, load its embeddings
        doc_emb = np.load('emb_{}.npy'.format(name_to_save),allow_pickle='TRUE').item()
        doc_text = np.load('spans_{}.npy'.format(name_to_save),allow_pickle='TRUE').item()
        file_names_dicto = np.load('file_{}.npy'.format(name_to_save),allow_pickle='TRUE').item()
        
        doc_emb = np.array(list(doc_emb.values())).reshape(-1,768)
        doc_text = list(doc_text.values())
        file_names = list(file_names_dicto.values())
    
    else:
        text = textract.process("{}".format(data.name)).decode('utf8')
        text = text.replace("\r", " ")
        text = text.replace("\n", " ")
        text = text.replace(" . "," ")
        
        doc_emb, doc_text, file_names = encode_docs((name_to_save,text),maxlen = 64, stride = 32)
        
        doc_emb = doc_emb.reshape(-1, 768)
        with open("{}.txt".format(name_to_save),"w",encoding="utf-8") as f:
            f.write(text)
    
    #once embeddings are calculated, run MIPS
    start = time.time()
    query_emb = encode_query(query)
    
    scores = np.matmul(query_emb, doc_emb.transpose(1,0))[0].tolist()
    doc_score_pairs = list(zip(doc_text, scores, file_names))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    
    probs_sum = 0
    probs = softmax(sorted(scores,reverse = True)[:k])
    table = {"Passage":[],"Answer":[],"Probabilities":[]}
    
    
    #get answers for each pair of question (from user) and top best passages
    for i, (passage, _, names) in enumerate(doc_score_pairs[:k]):
        passage = passage.replace("\n","")
        #passage = passage.replace(" . "," ")
        
        if probs[i] > 0.1 or (i < 3 and probs[i] > 0.05): #generate answers for more likely passages but no less than 2
            QA = {'question':query,'context':passage}
            ans = pipe(QA)
            probabilities = "P(a|p): {}, P(a|p,q): {}, P(p|q): {}".format(round(ans["score"],5), 
                                                                          round(ans["score"]*probs[i],5), 
                                                                          round(probs[i],5))
            table["Passage"].append(passage)
            table["Answer"].append(str(ans["answer"]).upper())
            table["Probabilities"].append(probabilities)
        else:
            table["Passage"].append(passage)
            table["Answer"].append("no_answer_calculated")
            table["Probabilities"].append("P(p|q): {}".format(round(probs[i],5)))
            
        
    #format answers for ~nice output and save it for future (if the same question is asked again using same pdf)
    df = pd.DataFrame(table)
    print(df)
    print("time: "+ str(time.time()-start))
    
    with open("HISTORY.txt","a", encoding = "utf-8") as f:
        f.write(hist)
        f.write(" " + str(current_time))
        f.write("\n")
        f.close()
    df.to_csv("{}.csv".format(hash(st)), index=False)
    
    list_outputs = []
    for i in range(k):
        text = ''
        temp = [df.iloc[n] for n in range(k)][i]
        text += 'PROBABILITIES: '+ temp.Probabilities + '\n\n' 
        text += 'ANSWER: ' +temp.Answer + '\n\n' 
        text += 'PASSAGE: '+temp.Passage + '\n\n' 
  
        list_outputs.append(text)
    
    return list_outputs

iface = gr.Interface(examples = [
        ["How high is the highest mountain?","China.pdf"], 
        ["Where does UK prime minister live?","London.pdf"]
    ],
    
    fn =predict,
    inputs = [gr.inputs.Textbox(default="What is Open-domain question answering?"),
              gr.inputs.File(),
    ],
    outputs = [
        gr.outputs.Carousel(['text']),
            ],
    description=description,
    title = title,
allow_flagging ="manual",flagging_options = ["correct","wrong"],
                     allow_screenshot=False)

iface.launch(share = True,enable_queue=True, show_error =True)