|
import json |
|
import random |
|
random.seed(999) |
|
import torch |
|
from torchvision.transforms import transforms |
|
import gradio as gr |
|
from datetime import datetime |
|
|
|
model = torch.load('model.pth', map_location=torch.device('cpu')) |
|
model.eval() |
|
transform = transforms.Compose([ |
|
transforms.Resize((384, 384)), |
|
transforms.ToTensor(), |
|
transforms.Normalize( |
|
mean=[ |
|
0.5, |
|
0.5, |
|
0.5, |
|
], std=[ |
|
0.5, |
|
0.5, |
|
0.5, |
|
]) |
|
]) |
|
|
|
with open("tags_9940.json", "r") as file: |
|
allowed_tags = json.load(file) |
|
|
|
allowed_tags = sorted(allowed_tags) |
|
allowed_tags.append("explicit") |
|
allowed_tags.append("questionable") |
|
allowed_tags.append("safe") |
|
|
|
def create_tags(image, threshold): |
|
img = image.convert('RGB') |
|
tensor = transform(img).unsqueeze(0) |
|
|
|
with torch.no_grad(): |
|
logits = model(tensor) |
|
probabilities = torch.nn.functional.sigmoid(logits[0]) |
|
indices = torch.where(probabilities > threshold)[0] |
|
values = probabilities[indices] |
|
|
|
temp = [] |
|
tag_score = dict() |
|
for i in range(indices.size(0)): |
|
temp.append([allowed_tags[indices[i]], values[i].item()]) |
|
tag_score[allowed_tags[indices[i]]] = values[i].item() |
|
|
|
|
|
temp = [t[0] for t in temp] |
|
text_no_impl = " ".join(temp) |
|
current_datetime = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") |
|
print(f"{current_datetime}: finished.") |
|
return text_no_impl, tag_score |
|
|
|
demo = gr.Interface( |
|
create_tags, |
|
inputs=[gr.Image(label="Source", sources=['upload', 'webcam'], type='pil'), gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.30, label="Threshold")], |
|
outputs=[ |
|
gr.Textbox(label="Tag String"), |
|
gr.Label(label="Tag Predictions", num_top_classes=200), |
|
], |
|
allow_flagging="never", |
|
) |
|
|
|
demo.launch() |
|
|