File size: 15,991 Bytes
2ac7b58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "8495bede-ab8f-416b-b5f2-6a76b1e63935",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "D:\\Projects\\LLMs\\venv\\lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "from tqdm import tqdm\n",
    "from sentence_transformers import SentenceTransformer, util"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "2b8cae6d-547b-4018-9f68-b0a45284b4b4",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# model = SentenceTransformer('DMetaSoul/sbert-chinese-general-v2')\n",
    "model = SentenceTransformer('TintinMeimei/menglang_yongtulv_aimatch_v1')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "d3907a6f-f8ab-40fe-8702-c8cb81e189c6",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "def sim(text1, text2):\n",
    "    emb1 = model.encode(text1, convert_to_tensor=True)\n",
    "    emb2 = model.encode(text2, convert_to_tensor=True)\n",
    "    score = util.cos_sim(emb1, emb2)\n",
    "    return score"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "3cec9f05-4ea9-46f8-a393-950c67a0150a",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "text1 = 'ๆŒ‚ๆœบ็ฉบ่ฐƒ'\n",
    "# text2 = '1.1.11 ้ซ˜ๆ•ˆ่Š‚่ƒฝๅฎถ็”จ็”ตๅ™จๅˆถ้€ \\nๅŒ…ๆ‹ฌ่Š‚่ƒฝๅž‹ๆˆฟ้—ด็ฉบ่ฐƒๅ™จใ€็ฉบ่ฐƒๆœบ็ป„ใ€็”ตๅ†ฐ็ฎฑใ€็”ตๅŠจๆด—่กฃๆœบใ€ๅนณๆฟ็”ต่ง†ๆœบใ€็”ต้ฃŽๆ‰‡็ญ‰ๅฎถ็”จ็”ตๅ™จๅˆถ้€ ใ€‚ๆˆฟ้—ด็ฉบๆฐ”่ฐƒ่Š‚ๅ™จ่ƒฝๆ•ˆไผ˜ไบŽใ€Šๆˆฟ้—ด็ฉบๆฐ”่ฐƒ่Š‚ๅ™จ่ƒฝๆ•ˆ้™ๅฎšๅ€ผๅŠ่ƒฝๆ•ˆ็ญ‰็บงใ€‹๏ผˆGB 12021.3๏ผ‰ๆ ‡ๅ‡†1็บง่ƒฝๆ•ˆๆฐดๅนณ๏ผ›่ฝฌ้€ŸๅฏๆŽงๅž‹ๆˆฟ้—ด็ฉบๆฐ”่ฐƒ่Š‚ๅ™จ่ƒฝๆ•ˆไผ˜ไบŽใ€Š่ฝฌ้€ŸๅฏๆŽงๅž‹ๆˆฟ้—ด็ฉบๆฐ”่ฐƒ่Š‚ๅ™จ่ƒฝๆ•ˆ้™ๅฎšๅ€ผๅŠ่ƒฝๆ•ˆ็ญ‰็บงใ€‹๏ผˆGB 21455๏ผ‰ๆ ‡ๅ‡†1็บง่ƒฝๆ•ˆๆฐดๅนณ๏ผ›ๅคš่”ๅผ็ฉบ่ฐƒ๏ผˆ็ƒญๆณต๏ผ‰ๆœบ็ป„่ƒฝๆ•ˆๆฏ”ไผ˜ไบŽใ€Šๅคš่”ๅผ็ฉบ่ฐƒ๏ผˆ็ƒญๆณต๏ผ‰ๆœบ็ป„่ƒฝๆ•ˆ้™ๅฎšๅ€ผๅŠ่ƒฝๆบๆ•ˆ็އ็ญ‰็บงใ€‹๏ผˆGB 21454๏ผ‰ๆ ‡ๅ‡†1็บง่ƒฝๆ•ˆๆฐดๅนณ๏ผ›ๅฎถ็”จ็”ตๅ†ฐ็ฎฑ่ƒฝๆ•ˆไผ˜ไบŽใ€Šๅฎถ็”จ็”ตๅ†ฐ็ฎฑ่€—็”ต้‡้™ๅฎšๅ€ผๅŠ่ƒฝๆ•ˆ็ญ‰็บงใ€‹๏ผˆGB 12021.2๏ผ‰ๆ ‡ๅ‡†1็บง่ƒฝๆ•ˆๆฐดๅนณ๏ผ›็”ตๅŠจๆด—่กฃๆœบ่ƒฝๆ•ˆไผ˜ไบŽใ€Š็”ตๅŠจๆด—่กฃๆœบ่ƒฝๆ•ˆๆฐดๆ•ˆ้™ๅฎšๅ€ผๅŠ็ญ‰็บงใ€‹๏ผˆGB 12021.4๏ผ‰ๆ ‡ๅ‡†1็บง่ƒฝๆ•ˆๆฐดๅนณ๏ผ›็”ต้ฅญ็…ฒ่ƒฝๆ•ˆไผ˜ไบŽใ€Š็”ต้ฅญ้”…่ƒฝๆ•ˆ้™ๅฎšๅ€ผๅŠ่ƒฝๆ•ˆ็ญ‰็บงใ€‹๏ผˆGB 12021.6๏ผ‰ๆ ‡ๅ‡†1็บง่ƒฝๆ•ˆๆฐดๅนณ๏ผ›ๅนณๆฟ็”ต่ง†ๆœบ่ƒฝๆ•ˆไผ˜ไบŽใ€Šๅนณๆฟ็”ต่ง†่ƒฝๆ•ˆ้™ๅฎšๅ€ผๅŠ่ƒฝๆ•ˆ็ญ‰็บงใ€‹๏ผˆGB 24850๏ผ‰ๆ ‡ๅ‡†1็บง่ƒฝๆ•ˆๆฐดๅนณ๏ผ›ไบคๆต็”ต้ฃŽๆ‰‡่ƒฝๆ•ˆไผ˜ไบŽใ€Šไบคๆต็”ต้ฃŽๆ‰‡่ƒฝๆ•ˆ้™ๅฎšๅ€ผๅŠ่ƒฝๆ•ˆ็ญ‰็บงใ€‹๏ผˆGB 12021.9๏ผ‰ๆ ‡ๅ‡†1็บง่ƒฝๆ•ˆๆฐดๅนณใ€‚ๅ…ถไป–้ซ˜ๆ•ˆ่Š‚่ƒฝๅฎถ็”จ็”ตๅ™จ่ƒฝๆ•ˆๅ‡ไผ˜ไบŽ็›ธๅบ”ๅ›ฝๅฎถๅผบๅˆถๆ€งๆ ‡ๅ‡†1็บง่ƒฝๆ•ˆๆฐดๅนณใ€‚'\n",
    "# text2 = 'ๅŒ…ๆ‹ฌ่Š‚่ƒฝๆณตใ€่Š‚่ƒฝๅž‹็œŸ็ฉบๅนฒ็‡ฅ่ฎพๅค‡ใ€่Š‚่ƒฝๅž‹็œŸ็ฉบ็‚‰็ญ‰่ฎพๅค‡ๅˆถ้€ ใ€‚ๆธ…ๆฐด็ฆปๅฟƒๆณต่ƒฝๆ•ˆๆŒ‡ๆ ‡ไผ˜ไบŽใ€Šๆธ…ๆฐด็ฆปๅฟƒๆณต่ƒฝๆ•ˆ้™ๅฎšๅ€ผๅŠ่Š‚่ƒฝ่ฏ„ไปทๅ€ผใ€‹๏ผˆGB 19762๏ผ‰ๆ ‡ๅ‡†ไธญ่Š‚่ƒฝ่ฏ„ไปทๅ€ผๆฐดๅนณ๏ผ›็ŸณๆฒนๅŒ–ๅทฅ็ฆปๅฟƒๆณต่ƒฝๆ•ˆไผ˜ไบŽใ€Š็ŸณๆฒนๅŒ–ๅทฅ็ฆปๅฟƒๆณต่ƒฝๆ•ˆ้™ๅฎšๅ€ผๅŠ่ƒฝๆ•ˆ็ญ‰็บงใ€‹๏ผˆGB 32284๏ผ‰ๆ ‡ๅ‡†ไธญ1็บง่ƒฝๆ•ˆๆฐดๅนณ๏ผ›ๆฝœๆฐด็”ตๆณต่ƒฝๆ•ˆไผ˜ไบŽใ€Šไบ•็”จๆฝœๆฐด็”ตๆณต่ƒฝๆ•ˆ้™ๅฎšๅ€ผๅŠ่ƒฝๆ•ˆ็ญ‰็บงใ€‹๏ผˆGB 32030๏ผ‰ใ€ใ€Šๅฐๅž‹ๆฝœๆฐด็”ตๆณต่ƒฝๆ•ˆ้™ๅฎšๅ€ผๅŠ่ƒฝๆ•ˆ็ญ‰็บงใ€‹๏ผˆGB 32029๏ผ‰ใ€ใ€Šๆฑกๆฐดๆฑก็‰ฉๆฝœๆฐด็”ตๆณต่ƒฝๆ•ˆ้™ๅฎšๅ€ผๅŠ่ƒฝๆ•ˆ็ญ‰็บงใ€‹๏ผˆGB 32031๏ผ‰ๆ ‡ๅ‡†ไธญ1็บง่ƒฝๆ•ˆๆฐดๅนณใ€‚'\n",
    "text2 = '้€€่€•่ฟ˜ๆž—'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "d570bf57-2518-4306-a7ae-712e81199460",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "tensor([[-0.5000]], device='cuda:0')"
      ]
     },
     "execution_count": 25,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sim(text1, text2)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "040cc794-9bb0-4c22-986c-933ca55ee637",
   "metadata": {},
   "source": [
    "### Process Data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "d46e4e74-f7c2-4339-b009-4ba77f1b2f9a",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>X1</th>\n",
       "      <th>X2</th>\n",
       "      <th>Y</th>\n",
       "      <th>Split</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>ไธญๆ–ฐๅˆถ่ฏๅŽ‚็ฉบ่ฐƒๆœซ็ซฏ้€ๅ›ž้ฃŽ็ณป็ปŸๆ”น้€ -่ฏขไปทๅ…ฌ็คบ</td>\n",
       "      <td>1.1.11 ้ซ˜ๆ•ˆ่Š‚่ƒฝๅฎถ็”จ็”ตๅ™จๅˆถ้€ \\nๅŒ…ๆ‹ฌ่Š‚่ƒฝๅž‹ๆˆฟ้—ด็ฉบ่ฐƒๅ™จใ€็ฉบ่ฐƒๆœบ็ป„ใ€็”ตๅ†ฐ็ฎฑใ€็”ตๅŠจๆด—่กฃๆœบใ€ๅนณ...</td>\n",
       "      <td>1</td>\n",
       "      <td>train</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>ไธญๆ–ฐๅˆถ่ฏๅŽ‚็ฉบ่ฐƒๆœซ็ซฏ้€ๅ›ž้ฃŽ็ณป็ปŸๆ”น้€ -่ฏขไปทๅ…ฌ็คบ</td>\n",
       "      <td>1.5.1 ้”…็‚‰๏ผˆ็ช‘็‚‰๏ผ‰่Š‚่ƒฝๆ”น้€ ๅ’Œ่ƒฝๆ•ˆๆๅ‡\\nๅŒ…ๆ‹ฌ็‡ƒ็…ค้”…็‚‰โ€œไปฅๅคงไปฃๅฐโ€๏ผŒ้‡‡็”จๅ…ˆ่ฟ›็‡ƒ็…ค้”…็‚‰ใ€่Š‚...</td>\n",
       "      <td>0</td>\n",
       "      <td>train</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                      X1                                                 X2  \\\n",
       "0  ไธญๆ–ฐๅˆถ่ฏๅŽ‚็ฉบ่ฐƒๆœซ็ซฏ้€ๅ›ž้ฃŽ็ณป็ปŸๆ”น้€ -่ฏขไปทๅ…ฌ็คบ  1.1.11 ้ซ˜ๆ•ˆ่Š‚่ƒฝๅฎถ็”จ็”ตๅ™จๅˆถ้€ \\nๅŒ…ๆ‹ฌ่Š‚่ƒฝๅž‹ๆˆฟ้—ด็ฉบ่ฐƒๅ™จใ€็ฉบ่ฐƒๆœบ็ป„ใ€็”ตๅ†ฐ็ฎฑใ€็”ตๅŠจๆด—่กฃๆœบใ€ๅนณ...   \n",
       "1  ไธญๆ–ฐๅˆถ่ฏๅŽ‚็ฉบ่ฐƒๆœซ็ซฏ้€ๅ›ž้ฃŽ็ณป็ปŸๆ”น้€ -่ฏขไปทๅ…ฌ็คบ  1.5.1 ้”…็‚‰๏ผˆ็ช‘็‚‰๏ผ‰่Š‚่ƒฝๆ”น้€ ๅ’Œ่ƒฝๆ•ˆๆๅ‡\\nๅŒ…ๆ‹ฌ็‡ƒ็…ค้”…็‚‰โ€œไปฅๅคงไปฃๅฐโ€๏ผŒ้‡‡็”จๅ…ˆ่ฟ›็‡ƒ็…ค้”…็‚‰ใ€่Š‚...   \n",
       "\n",
       "   Y  Split  \n",
       "0  1  train  \n",
       "1  0  train  "
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import pandas as pd\n",
    "\n",
    "df_data = pd.read_excel('AIๅŒน้…็ฎ—ๆณ•ๆ ทๆœฌ.xlsx', sheet_name='Sheet1', dtype=str)\n",
    "df_data.head(2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "673ce0e0-2801-4bb3-8e5d-5c4aff3ac725",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\vermouth\\AppData\\Local\\Temp\\ipykernel_22160\\3257358016.py:1: FutureWarning: Using short name for 'orient' is deprecated. Only the options: ('dict', list, 'series', 'split', 'records', 'index') will be used in a future version. Use one of the above to silence this warning.\n",
      "  train_data = [item for item in df_data.to_dict(orient='record') if item['Split']=='train']\n",
      "C:\\Users\\vermouth\\AppData\\Local\\Temp\\ipykernel_22160\\3257358016.py:2: FutureWarning: Using short name for 'orient' is deprecated. Only the options: ('dict', list, 'series', 'split', 'records', 'index') will be used in a future version. Use one of the above to silence this warning.\n",
      "  eval_data = [item for item in df_data.to_dict(orient='record') if item['Split']=='eval']\n",
      "C:\\Users\\vermouth\\AppData\\Local\\Temp\\ipykernel_22160\\3257358016.py:3: FutureWarning: Using short name for 'orient' is deprecated. Only the options: ('dict', list, 'series', 'split', 'records', 'index') will be used in a future version. Use one of the above to silence this warning.\n",
      "  test_data = [item for item in df_data.to_dict(orient='record') if item['Split']=='test']\n"
     ]
    }
   ],
   "source": [
    "train_data = [item for item in df_data.to_dict(orient='record') if item['Split']=='train']\n",
    "eval_data = [item for item in df_data.to_dict(orient='record') if item['Split']=='eval']\n",
    "test_data = [item for item in df_data.to_dict(orient='record') if item['Split']=='test']"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5037803d-980d-48a1-a61d-528bb9508ce0",
   "metadata": {},
   "source": [
    "### Model 1 - Fine tune a Sentence Transformer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "773429e9-57ce-418f-ad44-3c35d1b31a74",
   "metadata": {},
   "outputs": [],
   "source": [
    "# from sentence_transformers import InputExample, losses\n",
    "# from torch.utils.data import DataLoader\n",
    "\n",
    "# # Prepare data\n",
    "# train_data_sbert = []\n",
    "# eval_data_sbert = []\n",
    "# test_data_sbert = []\n",
    "\n",
    "# for item in train_data:\n",
    "#     label = 1.0 if float(item.get('Y')) == 1 else -1.0\n",
    "#     train_data_sbert.append(InputExample(texts=[item.get('X1'), item.get('X2')], label=label))\n",
    "# train_dataloader = DataLoader(train_data_sbert, shuffle=True, batch_size=2)\n",
    "# train_loss = losses.CosineSimilarityLoss(model)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "ec1b68cb-bec3-4896-b196-ec31b1132ad1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# from sentence_transformers import evaluation\n",
    "# evaluator = evaluation.EmbeddingSimilarityEvaluator([item.get('X1') for item in eval_data], [item.get('X2') for item in eval_data], [1.0 if float(item.get('Y'))==1 else -1.0 for item in eval_data])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "7c05c6ef-c5e7-416b-b797-9f8735ae5436",
   "metadata": {},
   "outputs": [],
   "source": [
    "# model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=1, warmup_steps=100, evaluator=evaluator, evaluation_steps=500)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "7de1e5f0-4b83-4d34-8385-77cdaa0ef08f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# model.save('./tmp_model')"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fdd686b1-c654-4135-8989-05f23c914afa",
   "metadata": {
    "tags": []
   },
   "source": [
    "### Model 2 - No Fine Tune + Threshold Tuning"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "a0247889-577d-4a92-8c0f-9c923748df93",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "def sim(text1, text2):\n",
    "    emb1 = model.encode(text1, convert_to_tensor=True)\n",
    "    emb2 = model.encode(text2, convert_to_tensor=True)\n",
    "    score = util.cos_sim(emb1, emb2)\n",
    "    return score\n",
    "\n",
    "def _acc_thres(scores, thres):\n",
    "    correct = 0\n",
    "    total = len(scores)\n",
    "    for score, truth in scores:\n",
    "        truth = float(truth)\n",
    "        pred = 1 if score >= thres else 0\n",
    "        if pred == truth:\n",
    "            correct += 1\n",
    "    return round(correct/total, 3)\n",
    "\n",
    "def model_train(train_data, eval_data):\n",
    "    score_train = []\n",
    "    score_eval = []\n",
    "    for item in tqdm(train_data):\n",
    "        score = sim(item['X1'], item['X2'])\n",
    "        score_train.append((score, item['Y']))\n",
    "    for item in tqdm(eval_data):\n",
    "        score = sim(item['X1'], item['X2'])\n",
    "        score_eval.append((score, item['Y']))\n",
    "    # find threshold that minize train error\n",
    "    score_train = sorted(score_train, reverse=True)\n",
    "    win_acc = -1\n",
    "    win_thres = -1\n",
    "    for thres in range(5, 100, 5):\n",
    "        thres = thres*0.01\n",
    "        acc = _acc_thres(score_train, thres)\n",
    "        if acc > win_acc:\n",
    "            win_acc = acc\n",
    "            win_thres = thres\n",
    "    eval_acc = _acc_thres(score_eval, win_thres)\n",
    "    return {'thres': win_thres, 'train_accuracy': win_acc, 'eval_accuracy': eval_acc}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "4e943ef9-ad40-494e-9d53-db9ccbf48bb4",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 12256/12256 [13:54<00:00, 14.69it/s]\n",
      "100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 4248/4248 [04:44<00:00, 14.94it/s]\n"
     ]
    }
   ],
   "source": [
    "r = model_train(train_data, eval_data)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "9cd38cc9-fe71-45b9-a22e-977a2e787fb5",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'thres': 0.25, 'train_accuracy': 0.831, 'eval_accuracy': 0.816}"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "r"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "53622ff1-7465-4663-a9f0-0c18df37b93e",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 4468/4468 [04:58<00:00, 14.98it/s]\n"
     ]
    }
   ],
   "source": [
    "score_test = []\n",
    "for item in tqdm(test_data):\n",
    "    score = sim(item['X1'], item['X2'])\n",
    "    score_test.append((score, item['Y']))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "47411f71-c774-4274-a1af-2a128589b559",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.815"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "_acc_thres(score_test, r['thres'])\n",
    "#_acc_thres(score_test, 0.25)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "59b741bc-7a20-4ed0-bc9d-b82ec3edff34",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}