Spaces:
Sleeping
Sleeping
File size: 5,159 Bytes
0463385 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [],
"source": [
"import torch \n",
"import pickle\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import time"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {},
"outputs": [],
"source": [
"IMAGE_SIZE = 224 # We need to resize the images given resnet takes input of image size >= 224\n",
"\n",
"mean, std = [0.4914, 0.4822, 0.4465], [0.247, 0.243, 0.261]\n",
"classes = ('airplane', \n",
" 'automobile', \n",
" 'bird',\n",
" 'cat',\n",
" 'deer',\n",
" 'dog', \n",
" 'frog', \n",
" 'horse', \n",
" 'ship',\n",
" 'truck')\n",
"\n",
"if torch.cuda.is_available():\n",
" torch.set_default_device('cuda')\n",
"\n",
"def show_data(img):\n",
" try:\n",
" plt.imshow(img[0])\n",
" except Exception as e:\n",
" print(e)\n",
" print(img[0].shape, img[0].permute(1,2,0).shape)\n",
" plt.imshow(img[0].permute(1,2,0))\n",
" plt.title('y = '+ str(img[1]))\n",
" plt.show()\n",
" \n",
"# We need to convert the images to numpy arrays as tensors are not compatible with matplotlib.\n",
"def im_convert(tensor):\n",
" #Lets\n",
" img = tensor.cpu().clone().detach().numpy() #\n",
" img = img.transpose(1, 2, 0)\n",
" img = img * np.array(tuple(mean)) + np.array(tuple(std))\n",
" img = img.clip(0, 1) # Clipping the size to print the images later\n",
" return img"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [],
"source": [
"def unpickle(file):\n",
" with open(file, 'rb') as fo:\n",
" data_dict = pickle.load(fo, encoding='bytes')\n",
" \n",
" # Decode keys from bytes to strings\n",
" decoded_dict = {}\n",
" for key, value in data_dict.items():\n",
" decoded_key = key.decode('utf-8') # Assuming UTF-8 encoding\n",
" decoded_dict[decoded_key] = value\n",
" \n",
" return decoded_dict\n"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {},
"outputs": [],
"source": [
"decoded_dict = unpickle('./test_batch')\n",
"decoded_dict\n",
"data = torch.tensor(decoded_dict['data']).reshape([10000,3,32,32])\n",
"dataset = {\"image\":data, \"target\": torch.tensor(decoded_dict[\"labels\"])}"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"dict_keys(['batch_label', 'labels', 'data', 'filenames'])"
]
},
"execution_count": 77,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"decoded_dict.keys()"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {},
"outputs": [],
"source": [
"idx = 0\n",
"image = dataset['image'][idx]\n",
"label = dataset[\"target\"][idx].item()"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'cat'"
]
},
"execution_count": 79,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"classes[label]"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"cat\n",
"Time taken: 0.013 s\n"
]
}
],
"source": [
"# Load model directly\n",
"from transformers import AutoImageProcessor, AutoModelForImageClassification\n",
"\n",
"processor = AutoImageProcessor.from_pretrained(\"heyitskim1912/AML_A2_Q4\")\n",
"model = AutoModelForImageClassification.from_pretrained(\"heyitskim1912/AML_A2_Q4\")\n",
"\n",
"inputs = processor(image, return_tensors=\"pt\")\n",
"\n",
"start_time = time.time()\n",
"with torch.no_grad():\n",
" logits = model(**inputs).logits\n",
"\n",
"# model predicts one of the 1000 ImageNet classes\n",
"predicted_label = logits.argmax(-1).item()\n",
"print(model.config.id2label[predicted_label])\n",
"end_time = time.time()\n",
"time_taken = round(end_time - start_time, 3)\n",
"print(f\"Time taken: {time_taken} s\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "PyTorchenv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|