Spaces:
Sleeping
Sleeping
# MBART: Multilingual Denoising Pre-training for Neural Machine Translation | |
[https://arxiv.org/abs/2001.08210] | |
## Introduction | |
MBART is a sequence-to-sequence denoising auto-encoder pre-trained on large-scale monolingual corpora in many languages using the BART objective. mBART is one of the first methods for pre-training a complete sequence-to-sequence model by denoising full texts in multiple languages, while previous approaches have focused only on the encoder, decoder, or reconstructing parts of the text. | |
## Pre-trained models | |
Model | Description | # params | Download | |
---|---|---|--- | |
`mbart.CC25` | mBART model with 12 encoder and decoder layers trained on 25 languages' monolingual corpus | 610M | [mbart.CC25.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/mbart/mbart.cc25.v2.tar.gz) | |
`mbart.ft.ro_en` | finetune mBART cc25 model on ro-en language pairs | 610M | [mbart.cc25.ft.enro.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/mbart/mbart.cc25.ft.enro.tar.gz) | |
## Results | |
**[WMT16 EN-RO](https://www.statmt.org/wmt16/translation-task.html)** | |
_(test set, no additional data used)_ | |
Model | en-ro | ro-en | |
---|---|--- | |
`Random` | 34.3 | 34.0 | |
`mbart.cc25` | 37.7 | 37.8 | |
`mbart.enro.bilingual` | 38.5 | 38.5 | |
## BPE data | |
# download model | |
wget https://dl.fbaipublicfiles.com/fairseq/models/mbart/mbart.cc25.v2.tar.gz | |
tar -xzvf mbart.CC25.tar.gz | |
# bpe data | |
install SPM [here](https://github.com/google/sentencepiece) | |
```bash | |
SPM=/path/to/sentencepiece/build/src/spm_encode | |
MODEL=sentence.bpe.model | |
${SPM} --model=${MODEL} < ${DATA}/${TRAIN}.${SRC} > ${DATA}/${TRAIN}.spm.${SRC} & | |
${SPM} --model=${MODEL} < ${DATA}/${TRAIN}.${TGT} > ${DATA}/${TRAIN}.spm.${TGT} & | |
${SPM} --model=${MODEL} < ${DATA}/${VALID}.${SRC} > ${DATA}/${VALID}.spm.${SRC} & | |
${SPM} --model=${MODEL} < ${DATA}/${VALID}.${TGT} > ${DATA}/${VALID}.spm.${TGT} & | |
${SPM} --model=${MODEL} < ${DATA}/${TEST}.${SRC} > ${DATA}/${TEST}.spm.${SRC} & | |
${SPM} --model=${MODEL} < ${DATA}/${TEST}.${TGT} > ${DATA}/${TEST}.spm.${TGT} & | |
``` | |
## Preprocess data | |
```bash | |
DICT=dict.txt | |
fairseq-preprocess \ | |
--source-lang ${SRC} \ | |
--target-lang ${TGT} \ | |
--trainpref ${DATA}/${TRAIN}.spm \ | |
--validpref ${DATA}/${VALID}.spm \ | |
--testpref ${DATA}/${TEST}.spm \ | |
--destdir ${DEST}/${NAME} \ | |
--thresholdtgt 0 \ | |
--thresholdsrc 0 \ | |
--srcdict ${DICT} \ | |
--tgtdict ${DICT} \ | |
--workers 70 | |
``` | |
## Finetune on EN-RO | |
Finetune on mbart CC25 | |
```bash | |
PRETRAIN=mbart.cc25 # fix if you moved the downloaded checkpoint | |
langs=ar_AR,cs_CZ,de_DE,en_XX,es_XX,et_EE,fi_FI,fr_XX,gu_IN,hi_IN,it_IT,ja_XX,kk_KZ,ko_KR,lt_LT,lv_LV,my_MM,ne_NP,nl_XX,ro_RO,ru_RU,si_LK,tr_TR,vi_VN,zh_CN | |
fairseq-train path_2_data \ | |
--encoder-normalize-before --decoder-normalize-before \ | |
--arch mbart_large --layernorm-embedding \ | |
--task translation_from_pretrained_bart \ | |
--source-lang en_XX --target-lang ro_RO \ | |
--criterion label_smoothed_cross_entropy --label-smoothing 0.2 \ | |
--optimizer adam --adam-eps 1e-06 --adam-betas '(0.9, 0.98)' \ | |
--lr-scheduler polynomial_decay --lr 3e-05 --warmup-updates 2500 --total-num-update 40000 \ | |
--dropout 0.3 --attention-dropout 0.1 --weight-decay 0.0 \ | |
--max-tokens 1024 --update-freq 2 \ | |
--save-interval 1 --save-interval-updates 5000 --keep-interval-updates 10 --no-epoch-checkpoints \ | |
--seed 222 --log-format simple --log-interval 2 \ | |
--restore-file $PRETRAIN \ | |
--reset-optimizer --reset-meters --reset-dataloader --reset-lr-scheduler \ | |
--langs $langs \ | |
--ddp-backend legacy_ddp | |
``` | |
## Generate on EN-RO | |
Get sacrebleu on finetuned en-ro model | |
get tokenizer [here](https://github.com/rsennrich/wmt16-scripts) | |
```bash | |
wget https://dl.fbaipublicfiles.com/fairseq/models/mbart/mbart.cc25.ft.enro.tar.gz | |
tar -xzvf mbart.cc25.ft.enro.tar.gz | |
``` | |
```bash | |
model_dir=MBART_finetuned_enro # fix if you moved the checkpoint | |
fairseq-generate path_2_data \ | |
--path $model_dir/model.pt \ | |
--task translation_from_pretrained_bart \ | |
--gen-subset test \ | |
-t ro_RO -s en_XX \ | |
--bpe 'sentencepiece' --sentencepiece-model $model_dir/sentence.bpe.model \ | |
--sacrebleu --remove-bpe 'sentencepiece' \ | |
--batch-size 32 --langs $langs > en_ro | |
cat en_ro | grep -P "^H" |sort -V |cut -f 3- | sed 's/\[ro_RO\]//g' |$TOKENIZER ro > en_ro.hyp | |
cat en_ro | grep -P "^T" |sort -V |cut -f 2- | sed 's/\[ro_RO\]//g' |$TOKENIZER ro > en_ro.ref | |
sacrebleu -tok 'none' -s 'none' en_ro.ref < en_ro.hyp | |
``` | |
## Citation | |
```bibtex | |
@article{liu2020multilingual, | |
title={Multilingual Denoising Pre-training for Neural Machine Translation}, | |
author={Yinhan Liu and Jiatao Gu and Naman Goyal and Xian Li and Sergey Edunov and Marjan Ghazvininejad and Mike Lewis and Luke Zettlemoyer}, | |
year={2020}, | |
eprint={2001.08210}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL} | |
} | |
``` | |