Swap-Face-Model / basicsr /archs /dfdnet_util.py
Tzktz's picture
Upload 202 files
c59c099 verified
raw
history blame
5.21 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
from torch.nn.utils.spectral_norm import spectral_norm
class BlurFunctionBackward(Function):
@staticmethod
def forward(ctx, grad_output, kernel, kernel_flip):
ctx.save_for_backward(kernel, kernel_flip)
grad_input = F.conv2d(grad_output, kernel_flip, padding=1, groups=grad_output.shape[1])
return grad_input
@staticmethod
def backward(ctx, gradgrad_output):
kernel, _ = ctx.saved_tensors
grad_input = F.conv2d(gradgrad_output, kernel, padding=1, groups=gradgrad_output.shape[1])
return grad_input, None, None
class BlurFunction(Function):
@staticmethod
def forward(ctx, x, kernel, kernel_flip):
ctx.save_for_backward(kernel, kernel_flip)
output = F.conv2d(x, kernel, padding=1, groups=x.shape[1])
return output
@staticmethod
def backward(ctx, grad_output):
kernel, kernel_flip = ctx.saved_tensors
grad_input = BlurFunctionBackward.apply(grad_output, kernel, kernel_flip)
return grad_input, None, None
blur = BlurFunction.apply
class Blur(nn.Module):
def __init__(self, channel):
super().__init__()
kernel = torch.tensor([[1, 2, 1], [2, 4, 2], [1, 2, 1]], dtype=torch.float32)
kernel = kernel.view(1, 1, 3, 3)
kernel = kernel / kernel.sum()
kernel_flip = torch.flip(kernel, [2, 3])
self.kernel = kernel.repeat(channel, 1, 1, 1)
self.kernel_flip = kernel_flip.repeat(channel, 1, 1, 1)
def forward(self, x):
return blur(x, self.kernel.type_as(x), self.kernel_flip.type_as(x))
def calc_mean_std(feat, eps=1e-5):
"""Calculate mean and std for adaptive_instance_normalization.
Args:
feat (Tensor): 4D tensor.
eps (float): A small value added to the variance to avoid
divide-by-zero. Default: 1e-5.
"""
size = feat.size()
assert len(size) == 4, 'The input feature should be 4D tensor.'
n, c = size[:2]
feat_var = feat.view(n, c, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(n, c, 1, 1)
feat_mean = feat.view(n, c, -1).mean(dim=2).view(n, c, 1, 1)
return feat_mean, feat_std
def adaptive_instance_normalization(content_feat, style_feat):
"""Adaptive instance normalization.
Adjust the reference features to have the similar color and illuminations
as those in the degradate features.
Args:
content_feat (Tensor): The reference feature.
style_feat (Tensor): The degradate features.
"""
size = content_feat.size()
style_mean, style_std = calc_mean_std(style_feat)
content_mean, content_std = calc_mean_std(content_feat)
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
def AttentionBlock(in_channel):
return nn.Sequential(
spectral_norm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)), nn.LeakyReLU(0.2, True),
spectral_norm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)))
def conv_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, bias=True):
"""Conv block used in MSDilationBlock."""
return nn.Sequential(
spectral_norm(
nn.Conv2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=((kernel_size - 1) // 2) * dilation,
bias=bias)),
nn.LeakyReLU(0.2),
spectral_norm(
nn.Conv2d(
out_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=((kernel_size - 1) // 2) * dilation,
bias=bias)),
)
class MSDilationBlock(nn.Module):
"""Multi-scale dilation block."""
def __init__(self, in_channels, kernel_size=3, dilation=(1, 1, 1, 1), bias=True):
super(MSDilationBlock, self).__init__()
self.conv_blocks = nn.ModuleList()
for i in range(4):
self.conv_blocks.append(conv_block(in_channels, in_channels, kernel_size, dilation=dilation[i], bias=bias))
self.conv_fusion = spectral_norm(
nn.Conv2d(
in_channels * 4,
in_channels,
kernel_size=kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
bias=bias))
def forward(self, x):
out = []
for i in range(4):
out.append(self.conv_blocks[i](x))
out = torch.cat(out, 1)
out = self.conv_fusion(out) + x
return out
class UpResBlock(nn.Module):
def __init__(self, in_channel):
super(UpResBlock, self).__init__()
self.body = nn.Sequential(
nn.Conv2d(in_channel, in_channel, 3, 1, 1),
nn.LeakyReLU(0.2, True),
nn.Conv2d(in_channel, in_channel, 3, 1, 1),
)
def forward(self, x):
out = x + self.body(x)
return out