File size: 3,770 Bytes
ba94ba9
 
 
 
 
 
 
 
 
6ff7b35
ba94ba9
 
 
 
 
f715f17
 
 
 
 
ba94ba9
 
 
 
 
 
 
 
 
 
 
 
f715f17
ba94ba9
 
f715f17
 
ba94ba9
 
 
 
 
 
 
 
 
 
 
f715f17
 
 
 
 
 
 
 
 
 
ba94ba9
f715f17
 
 
ba94ba9
 
 
f715f17
 
ba94ba9
 
 
f715f17
ba94ba9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import pickle
import pandas as pd
import shap
from shap.plots._force_matplotlib import draw_additive_plot
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt

# load the model from disk
loaded_model = pickle.load(open("classroom_xgb.pkl", 'rb'))

# Setup SHAP
explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.

# Create the main function for server
def main_func(Target, Admission grade, Curricular units 2nd sem (grade), Previous qualification (grade), Curricular units 1st sem (grade), Course, Curricular units 2nd sem (approved), Age at enrollment):
    new_row = pd.DataFrame.from_dict({'Target':Target,'Admission grade':AdmissionGrade,
              'Curricular units 2nd sem (grade)':CurricularUnits2ndSemGrade,'Previous qualification (grade)':PreviousQualificationGrade,'Curricular units 1st sem (grade)':CurricularUnits1stSemGrade,
              'Course':Course,'Curricular units 2nd sem (approved)':CurricularUnits2ndSemApproved,'Age at enrollment':AgeAtEnrollment,
                                      orient = 'index').transpose() 
    
    prob = loaded_model.predict_proba(new_row)
    
    shap_values = explainer(new_row)
    # plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False)
    # plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False)
    plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False)

    plt.tight_layout()
    local_plot = plt.gcf()
    plt.close()
    
    return {"Dropout": float(prob[0][0]), "Graduate": 1-float(prob[0][0])}, local_plot

# Create the UI
title = "**Student Graduation Predictor & Interpreter** πŸͺ"
description1 = """This app takes info from subjects and predicts their graduation likelihood."""

description2 = """
To use the app, click on one of the examples, or adjust the values of the factors, and click on Analyze. 🀞
""" 

with gr.Blocks(title=title) as demo:
    gr.Markdown(f"## {title}")
    gr.Markdown(description1)
    gr.Markdown("""---""")
    gr.Markdown(description2)
    gr.Markdown("""---""")
    with gr.Row():
        with gr.Column():
        Target = gr.Number(label="Target Score", value=40)
        AdmissionGrade = gr.Slider(label="AdmissionGrade Score", minimum=0, maximum=1, value=1, step=1)
        PreviousQualificationGrade = gr.Slider(label="PreviousQualificationGrade Score", minimum=1, maximum=5, value=4, step=1)
        CurricularUnits1stSemGrade = gr.Slider(label="CurricularUnits1stSemGrade Score", minimum=1, maximum=5, value=4, step=1) 
        Course = gr.Slider(label="Course Score", minimum=1, maximum=5, value=4, step=1)
        CurricularUnits2ndSemApproved = gr.Slider(label="CurricularUnits2ndSemApproved Score", minimum=1, maximum=5, value=4, step=1)
        AgeAtEnrollment = gr.Slider(label="AgeAtEnrollment Score", minimum=1, maximum=5, value=4, step=1)
        submit_btn = gr.Button("Analyze")

        with gr.Column(visible=True) as output_col:
            label = gr.Label(label = "Predicted Label")
            local_plot = gr.Plot(label = 'Shap:')

    submit_btn.click(
        main_func,
        [Target, AdmissionGrade, CurricularUnits2ndSemGrade, PreviousQualificationGrade, CurricularUnits1stSemGrade, Course, CurricularUnits2ndSemApproved, AgeAtEnrollment],
        [label,local_plot], api_name="Graduation_Predictor"
    )
    
    gr.Markdown("### Click on any of the examples below to see how it works:")
    gr.Examples([['Graduate',],119.6,13.000000,122.0,9773,5,18], [Target, AdmissionGrade, CurricularUnits2ndSemGrade, PreviousQualificationGrade, CurricularUnits1stSemGrade, Course, CurricularUnits2ndSemApproved, AgeAtEnrollment], [label,local_plot], main_func, cache_examples=True)

demo.launch()