Spaces:
Sleeping
Sleeping
File size: 2,934 Bytes
e669abf f387393 1abbe27 e669abf 0e20e10 1b8c45e e669abf f057421 e669abf 9cc7c4e e669abf 9cc7c4e 2888c51 9cc7c4e 7f48a24 68fbe9e 7f48a24 e669abf 579be1d e669abf 518ac36 4a73816 3a53d21 7f48a24 6212fa9 518ac36 b335787 518ac36 e669abf 42c5082 e669abf 7f48a24 e669abf 08184e4 e669abf 42c5082 e669abf 7de9116 08184e4 68fbe9e e669abf 42c5082 9cc7c4e 7f48a24 f1c8fb6 e669abf 7f48a24 f1c8fb6 e669abf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import streamlit as st
import gradio as gr
import shap
import numpy as np
import scipy as sp
import torch
import tensorflow as tf
import transformers
from transformers import pipeline
from transformers import RobertaTokenizer, RobertaModel
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer
import matplotlib.pyplot as plt
device = "cuda:0" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained("paragon-analytics/ADRv1")
model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1").to(device)
# build a pipeline object to do predictions
pred = transformers.pipeline("text-classification", model=model,
tokenizer=tokenizer, return_all_scores=True)
explainer = shap.Explainer(pred)
##
classifier = transformers.pipeline("text-classification", model = "cross-encoder/qnli-electra-base")
def med_score(x):
label = x['label']
score_1 = x['score']
return score_1
##
def adr_predict(x):
encoded_input = tokenizer(x, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = tf.nn.softmax(scores)
shap_values = explainer([str(x).lower()])
local_plot = shap.plots.text(shap_values[0], display=False)
med = med_score(classifier(x+str("There is a medication."))[0])
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot, {"Contains Medication": float(med), "No Medications": float(1-med)}
def main(prob1):
text = str(prob1).lower()
obj = adr_predict(text)
return obj[0],obj[1],obj[2]
title = "Welcome to **ADR Detector** 🪐"
description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe)
adverse reaction to medicaitons. Please do NOT use for medical diagnosis."""
with gr.Blocks(title=title) as demo:
gr.Markdown(f"## {title}")
gr.Markdown(description1)
gr.Markdown("""---""")
prob1 = gr.Textbox(label="Enter Your Text Here:",lines=2, placeholder="Type it here ...")
submit_btn = gr.Button("Analyze")
with gr.Column(visible=True) as output_col:
label = gr.Label(label = "Predicted Label")
local_plot = gr.HTML(label = 'Shap:')
med = gr.Label(label = "Contains Medication")
submit_btn.click(
main,
[prob1],
[label
,local_plot, med
], api_name="adr"
)
gr.Markdown("### Click on any of the examples below to see to what extent they contain resilience messaging:")
gr.Examples([["I have severe pain."],["I have minor pain."]], [prob1], [label,local_plot, med
], main, cache_examples=True)
demo.launch()
|