File size: 29,135 Bytes
d355eed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
import os
import streamlit as st
from typing_extensions import TypedDict, List
from IPython.display import Image, display
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain.schema import Document
from langgraph.graph import START, END, StateGraph
from langchain.prompts import PromptTemplate
import uuid
from langchain_groq import ChatGroq
from langchain_community.utilities import GoogleSerperAPIWrapper
from langchain_chroma import Chroma
from langchain_community.document_loaders import NewsURLLoader
from langchain_community.retrievers.wikipedia import WikipediaRetriever
from sentence_transformers import SentenceTransformer
from langchain.vectorstores import Chroma
from langchain_community.document_loaders import UnstructuredURLLoader, NewsURLLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_core.output_parsers import JsonOutputParser
from langchain_community.vectorstores.utils import filter_complex_metadata
from langchain.schema import Document
from langchain_community.document_loaders.directory import DirectoryLoader
from langchain.document_loaders import TextLoader
from langgraph.graph import START, END, StateGraph
from langchain.retrievers import WebResearchRetriever
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from exa_py import Exa



os.environ["LANGCHAIN_API_KEY"] = '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'
os.environ["LANGCHAIN_TRACING_V2"]="true"
os.environ["LANGCHAIN_ENDPOINT"]= "https://api.smith.langchain.com"
os.environ["LANGCHAIN_PROJECT"] = "Lithuanian_law_v2_LT_Kalba_Groq"
os.environ["GROQ_API_KEY"] = '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' 
os.environ["SERPER_API_KEY"] = '6f80701ecd004c2466e8bd7bcebacacf89c74b84'  
exa = Exa(api_key="6ecb4e80-83e8-47c4-a116-c1041d0e096e")






def create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='mmr', k=7, chunk_size=300, chunk_overlap=30):
    
    model_name = "Alibaba-NLP/gte-multilingual-base"
    model_kwargs = {'device': 'cpu',
                   "trust_remote_code" : 'False'}
    encode_kwargs = {'normalize_embeddings': True}
    embeddings = HuggingFaceEmbeddings(
        model_name=model_name,
        model_kwargs=model_kwargs,
        encode_kwargs=encode_kwargs
    )

    

    if os.path.exists(vectorstore_path) and os.listdir(vectorstore_path):
        vectorstore = Chroma(persist_directory=vectorstore_path,embedding_function=embeddings)
        
        
    else:
        st.write("Vector store doesnt exist and will be created now")
        loader = DirectoryLoader('./data/', glob="./*.txt", loader_cls=TextLoader)
        docs = loader.load()
        
        
        text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
        chunk_size=chunk_size, chunk_overlap=chunk_overlap,
        separators=["\n\n \n\n","\n\n\n", "\n\n", r"In \[[0-9]+\]", r"\n+", r"\s+"],
        is_separator_regex = True
    )
        split_docs = text_splitter.split_documents(docs)

        
        vectorstore = Chroma.from_documents(
            documents=split_docs, embedding=embeddings, persist_directory=vectorstore_path,
        )
        
    
    retriever=vectorstore.as_retriever(search_type = search_type, search_kwargs={"k": k})

    return  retriever


def handle_userinput(user_question, custom_graph):
    # Add the user's question to the chat history and display it in the UI
    st.session_state.messages.append({"role": "user", "content": user_question})
    st.chat_message("user").write(user_question)

    # Generate a unique thread ID for the graph's state
    config = {"configurable": {"thread_id": str(uuid.uuid4())}}

    try:
        # Invoke the custom graph with the input question
        state_dict =  custom_graph.invoke(
            {"question": user_question, "steps": []}, config
        )

        docs = state_dict["documents"]
        with st.sidebar:
            st.subheader("Dokumentai, kuriuos Birutė gavo kaip kontekstą")
            with st.spinner("Processing"):
                for doc in docs:
                    # Extract document content
                    content = doc
                    
                    # Extract document metadata if available
                    #metadata =doc.metadata.get('original_doc_name', 'unknown')
                    # Display content and metadata
                    st.write(f"Documentas: {content}")
                    
                   
        

        # Check if a response (generation) was produced by the graph
        if 'generation' in state_dict and state_dict['generation']:
            response = state_dict["generation"]

            # Add the assistant's response to the chat history and display it
            st.session_state.messages.append({"role": "assistant", "content": response})
            st.chat_message("assistant").write(response)
        else:
            st.chat_message("assistant").write("Your question violates toxicity rules or contains sensitive information.")

    except Exception as e:
        # Display an error message in case of failure
        st.chat_message("assistant").write("Klaida: Arba per didelis kontekstas suteiktas modeliui, arba užklausų serveryje yra per daug")
        




from typing import Annotated

def create_workflow(retriever):
    class GraphState(TypedDict):
        """
        Represents the state of our graph.
        Attributes:
            question: question
            generation: LLM generation
            search: whether to add search
            documents: list of documents
            generations_count : generations count
        """
        question: Annotated[str, "Single"]  # Ensuring only one value per step
        generation: str
        search: str
        documents: List[str]
        steps: List[str]
        generation_count: int

    
    llm = ChatGroq(
            model="llama-3.3-70b-versatile",  
           temperature=0.2,
            max_tokens=600,
            max_retries=3,

        )
    llm_checker = ChatGroq(
            model="llama3-groq-70b-8192-tool-use-preview",  
            temperature=0.1,
            max_tokens=400,
            max_retries=3,
       )



    

    


    workflow = StateGraph(GraphState)

    # Define the nodes
    workflow.add_node("ask_question", lambda state: ask_question(state))
    workflow.add_node("retrieve", lambda state: retrieve(state, retriever))
    workflow.add_node("grade_documents", lambda state: grade_documents(state, retrieval_grader_grader(llm_checker)))
    workflow.add_node("generate", lambda state: generate(state, QA_chain(llm)))
    workflow.add_node("web_search", web_search)
    #workflow.add_node("transform_query", lambda state: transform_query(state, create_question_rewriter(llm)))

    # Build graph
    workflow.set_entry_point("ask_question")
    workflow.add_edge("ask_question", "retrieve")
    workflow.add_edge("retrieve", "grade_documents")
    
    #workflow.add_edge("retrieve", "generate")
    
    

    workflow.add_conditional_edges(
        "grade_documents",
        decide_to_generate,
        {
            "search": "web_search",
            "generate": "generate",
        
        },
    )

    
    
   
    workflow.add_edge("web_search", "generate")
    workflow.add_edge("generate", END)
    
   
    
    


    custom_graph = workflow.compile()

    return custom_graph

def retrieval_grader_grader(llm):
    """
    Function to create a grader object using a passed LLM model.
    
    Args:
        llm: The language model to be used for grading.
        
    Returns:
        Callable: A pipeline function that grades relevance based on the LLM.
    """
    class GradeDocuments(BaseModel):
        """Ar faktas gali būti, nors truputi, naudingas atsakant į klausimą."""
        binary_score: str = Field(
            description="Documentai yra aktualūs klausimui, 'yes' arba 'no'"
        )
    
    # Create the structured LLM grader using the passed LLM
    structured_llm_grader = llm.with_structured_output(GradeDocuments) 
  
   


    # Define the prompt template
    prompt = PromptTemplate(
        template="""Jūs esate mokytojas, vertinantis viktoriną. Jums bus suteikta: 
        1/ KLAUSIMAS {question}
        2/ Studento pateiktas FAKTAS {documents}
        
        Jūs vertinate RELEVANCE RECALL:
        yes reiškia, kad FAKTAS yra susijęs su KLAUSIMU. 
        no reiškia, kad FAKTAS nesusijęs su KLAUSIMU. 
        yes yra aukščiausias (geriausias) balas. no yra žemiausias balas, kurį galite duoti. 
        Jeigu galima iš Studento pateiktas FAKTAS gauti bet kokių įžvalgu susijusiu su KLAUSIMAS, duok įvertinimą yes.
        
        Žingsnis po žingsnio paaiškinkite savo samprotavimus. Įsitikinkite, kad jūsų samprotavimai ir išvados yra teisingi. 
        
        Iš pradžių venkite tiesiog nurodyti teisingą atsakymą.
        
        Klausimas: {question} \n
        FAKTAS: \n\n {documents} \n\n
        
        Suteikite dvejetainį balą „yes“ arba „no“, kad nurodytumėte, ar dokumentas yra susijęs su klausimu. \n
        Pateikite dvejetainį balą kaip JSON su vienu raktu „balu“ ir be įžangos ar paaiškinimo.
        """,
        input_variables=['documents', 'question'],
    )
    
    # Combine the prompt with the structured LLM grader
    retrieval_grader = prompt | structured_llm_grader

    # Return the grader object
    return retrieval_grader    


def create_toxicity_checker(llm):
    """
    Function to create a toxicity checker object using a passed LLM model.
    
    Args:
        llm: The language model to be used for toxicity checking.
        
    Returns:
        Callable: A pipeline function that checks for toxicity based on the LLM.
    """
    
    # Define the class for toxicity check inside the function
    class PromtGuard(BaseModel):
        """Binary score for toxicity check on question."""
        score: str = Field(
            description="Ar klausimams yra nesaugus, 'taip' arba 'ne'"
        )
    
    # Create the structured LLM toxicity checker using the passed LLM
    
    
    # Create the structured LLM grader using the passed LLM
    structured_llm_toxicity_checker = llm.with_structured_output(PromtGuard)


    # Define the prompt template
    prompt = PromptTemplate(
        template="""Jūs esate klasifikatorius, kuris įvertins tekstą pagal pateiktus kriterijus. 
        Čia pateikiami taškų kriterijai:
        
        (1) įžeidinėjimai
        
        (2) grasinimai
        
        (3) labai neigiami komentarai
        
        (4) bet kokią asmenį identifikuojančią informaciją, pvz., API raktus
        
        Rezultatas:
        
        „Taip“ reiškia, kad tekstas atitinka BET KOKĮ kriterijų. 
        
        Įvertinimas „ne“ reiškia, kad tekstas neatitinka VISŲ kriterijų. 
        
        Štai klausimas: {question}
        
        Suteikite dvejetainį balą „taip“ arba „ne“, kad nurodytumėte, ar atsakymas yra naudingas norint išspręsti klausimą.
        Jei atsakyme yra pasikartojančių frazių, kartojimas, tada grąžinkite „ne“\n
        Pateikite dvejetainį balą kaip JSON su vienu raktu „balu“ ir be įžangos ar paaiškinimo.""",
        input_variables=["question"],
    )
    
    # Combine the prompt with the structured LLM toxicity checker
    toxicity_grader = prompt | structured_llm_toxicity_checker

    # Return the toxicity checker object
    return toxicity_grader


def grade_question_toxicity(state, toxicity_grader):
    """
    Grades the question for toxicity.
    
    Args:
        state (dict): The current graph state.
        
    Returns:
        str: 'good' if the question passes the toxicity check, 'bad' otherwise.
    """
    steps = state["steps"]
    steps.append("promt guard")
    score = toxicity_grader.invoke({"question": state["question"]})
    grade = getattr(score, 'score', None)
    
    if grade == "yes":
        return "bad" 
    else:
        return "good"



def create_helpfulness_checker(llm):
    """
    Function to create a helpfulness checker object using a passed LLM model.
    
    Args:
        llm: The language model to be used for checking the helpfulness of answers.
        
    Returns:
        Callable: A pipeline function that checks if the student's answer is helpful.
    """
    
    class helpfulness_checker(BaseModel):
        """Binary score for toxicity check on question."""
        score: str = Field(
            description="Ar atsakymas yra naudingas?, 'taip' arba 'ne'"
        )
    
    # Create the structured LLM toxicity checker using the passed LLM
    
    
    
    structured_llm_helpfulness_checker = llm.with_structured_output(helpfulness_checker)


    # Create the structured LLM helpfulness checker using the passed LLM

    # Define the prompt template
    prompt = PromptTemplate(
    template="""Jums bus pateiktas KLAUSIMAS {question} ir ATSAKYMAS {generation}.
Įvertinkite ATSAKYMĄ pagal šiuos kriterijus:
Aktualumas: ATSAKYMAS turi būti tiesiogiai susijęs su KLAUSIMU ir konkrečiai į jį atsakyti.
Pakankamas: ATSAKYME turi būti pakankamai informacijos, kad būtų galima visapusiškai atsakyti į KLAUSIMĄ. Jei ATSAKYME vartojamos tokios frazės kaip „nežinau“, „neturiu pakankamai informacijos“, „pateiktuose dokumentuose apie tai neužsimenama“ ar panašių posakių, kuriuose vengiama tiesiogiai atsakyti į KLAUSIMĄ, įvertinkite „ne“.
Aiškumas ir glaustumas: ATSAKYMAS turi būti aiškus, be jokių nereikalingų frazių ar pasikartojimų. Jei jame yra perteklinė arba netiesioginė informacija, o ne tiesioginis atsakymas, įvertinkite „ne“.
Balų skaičiavimo instrukcijos:
„Taip“ reiškia, kad ATSAKYMAS atitinka visus šiuos kriterijus ir tiesiogiai susijęs su KLAUSIMU.
Įvertinimas „ne“ reiškia, kad ATSAKYMAS neatitinka visų šių kriterijų.
Jei randate tokio žodžio tekstą, kaip aš nežinau, nepakanka informacijos arba panašaus į šį, balas yra ne.
Pateikite balą kaip JSON su vienu raktu "balas" ir be papildomo teksto""",
    input_variables=["generation", "question"]
)
    
    # Combine the prompt with the structured LLM helpfulness checker
    helpfulness_grader = prompt | structured_llm_helpfulness_checker

    # Return the helpfulness checker object
    return helpfulness_grader





def create_hallucination_checker(llm):
    """
    Function to create a hallucination checker object using a passed LLM model.
    
    Args:
        llm: The language model to be used for checking hallucinations in the student's answer.
        
    Returns:
        Callable: A pipeline function that checks if the student's answer contains hallucinations.
    """
    

    class hallucination_checker(BaseModel):
        """Binary score for toxicity check on question."""
        score: str = Field(
            description="Ar dokumentas yra susijes su atsakymu?, 'taip' arba 'ne'"
        )
    
    # Create the structured LLM toxicity checker using the passed LLM
    
    
    
    structured_llm_hallucination_checker = llm.with_structured_output(hallucination_checker)

    # Define the prompt template
    prompt = PromptTemplate(
        template="""Jūs esate mokytojas, vertinantis viktoriną. 
        Jums bus pateikti FAKTAI ir MOKINIO ATSAKYMAS. 
        Jūs vertinate MOKINIO ATSAKYMĄ iš šaltinio FAKTAI. Sutelkite dėmesį į MOKINIO ATSAKYMO teisingumą ir bet kokių haliucinacijų aptikimą.
        Įsitikinkite, kad MOKINIO ATSAKYMAS atitinka šiuos kriterijus: 
        (1) jame nėra informacijos, nesusijusios su FAKTAIS
        (2) STUDENTŲ ATSAKYMAS turėtų būti visiškai pagrįstas ir pagrįstas pirminiuose dokumentuose pateikta informacija
        Rezultatas:
        „Taip“ reiškia, kad studento atsakymas atitinka visus kriterijus. Tai aukščiausias (geriausias) balas. 
        Balas „ne“ reiškia, kad studento atsakymas neatitinka visų kriterijų. Tai yra žemiausias galimas balas, kurį galite duoti.
        Žingsnis po žingsnio paaiškinkite savo samprotavimus, kad įsitikintumėte, jog argumentai ir išvados yra teisingi. 
        Iš pradžių venkite tiesiog nurodyti teisingą atsakymą.
        MOKINIO ATSAKYMAS: {generation} \n
        FAKTAI: \n\n {documents} \n\n
        
        Suteikite dvejetainį balą „taip“ arba „ne“, kad nurodytumėte, ar dokumentas yra susijęs su klausimu. \n
        Pateikite dvejetainį balą kaip JSON su vienu raktu „balu“ ir be įžangos ar paaiškinimo.""",
        input_variables=["generation", "documents"],
    )
    
    # Combine the prompt with the structured LLM hallucination checker
    hallucination_grader = prompt | structured_llm_haliucinations_checker

    # Return the hallucination checker object
    return hallucination_grader


def create_question_rewriter(llm):
    """
    Function to create a question rewriter object using a passed LLM model.
    
    Args:
        llm: The language model to be used for rewriting questions.
        
    Returns:
        Callable: A pipeline function that rewrites questions for optimized vector store retrieval.
    """
    
    # Define the prompt template for question rewriting
    re_write_prompt = PromptTemplate(
        template="""Esate klausimų perrašytojas, kurio specializacija yra Lietuvos teisė, tobulinanti klausimus, kad būtų galima optimizuoti jų paiešką iš teisinių dokumentų. Jūsų tikslas – išaiškinti teisinę intenciją, pašalinti dviprasmiškumą ir pakoreguoti formuluotes taip, kad jos atspindėtų teisinę kalbą, daugiausia dėmesio skiriant atitinkamiems raktiniams žodžiams, siekiant užtikrinti tikslų informacijos gavimą iš Lietuvos teisės šaltinių.
Man nereikia paaiškinimų, tik perrašyto klausimo.
Štai pradinis klausimas: \n\n {question}. Patobulintas klausimas be paaiškinimų : \n""",
        input_variables=["question"],
    )
    
    # Combine the prompt with the LLM and output parser
    question_rewriter = re_write_prompt | llm | StrOutputParser()

    # Return the question rewriter object
    return question_rewriter


def transform_query(state, question_rewriter):
    """
    Transform the query to produce a better question.
    Args:
        state (dict): The current graph state
    Returns:
        state (dict): Updates question key with a re-phrased question
    """

    print("---TRANSFORM QUERY---")
    question = state["question"]
    documents = state["documents"]
    steps = state["steps"]
    steps.append("question_transformation")

    # Re-write question
    better_question = question_rewriter.invoke({"question": question})
    print(f" Transformed question:  {better_question}")
    return {"documents": documents, "question": better_question}



def format_google_results_search(google_results):
    formatted_documents = []

    # Extract data from answerBox
    answer_box = google_results.get("answerBox", {})
    answer_box_title = answer_box.get("title", "No title")
    answer_box_answer = answer_box.get("answer", "No text")

   

    

    # Extract and add organic results as separate Documents
    for result in google_results.get("organic", []):
        title = result.get("title", "No title")
        link = result.get("link", "Nėra svetainės adreso")
        snippet = result.get("snippet", "No snippet available")
        

        document = Document(
            metadata={
                "Organinio rezultato pavadinimas": title,
                
            },
            page_content=(
                f"Pavadinimas: {title}     "
                f"Straipsnio ištrauka: {snippet}     "
                f"Nuoroda: {link}      "
                
            )
        )
        formatted_documents.append(document)

    return formatted_documents



def format_google_results_news(google_results):
    formatted_documents = []
    
    # Loop through each organic result and create a Document for it
    for result in google_results['organic']:
        title = result.get('title', 'No title')
        link = result.get('link', 'No link')
        descripsion = result.get('description', 'No link')
        snippet = result.get('snippet', 'No summary available')
        text = result.get('text' , 'no text')

        # Create a Document object with similar metadata structure to WikipediaRetriever
        document = Document(
            metadata={
                'Title': title,
                'Description': descripsion,
                'Text' : text,
                'Snippet': snippet,
                'Source': link
            },
            page_content=snippet  # Using the snippet as the page content
        )
        
        formatted_documents.append(document)
    
    return formatted_documents


def QA_chain(llm):
    """
    Creates a question-answering chain using the provided language model.
    Args:
        llm: The language model to use for generating answers.
    Returns:
        An LLMChain configured with the question-answering prompt and the provided model.
    """
    # Define the prompt template
    prompt = PromptTemplate(
    template="""Esi teisės asistentas, kurio užduotis yra atsakyti konkrečiai, informatyviai ir glaustai , pagrindžiant savo atsakymą į klausima pagal pateiktus dokumentus. 
    Atsakymas turi būti lietuvių kalba.  Nesikartok.
    Jei negali atsakyti į klausimą, pasakyk, Atsiprašau, nežinau atsakymo į jūsų klausimą.
    Neužduok papildomų klausimų.
    
    Klausimas: {question} 
    Dokumentai: {documents} 
    Atsakymas:
    """,
        input_variables=["question", "documents"],
)

    
    rag_chain = prompt | llm | StrOutputParser()

    
    return rag_chain


def grade_generation_v_documents_and_question(state,hallucination_grader,answer_grader ):
    """
    Determines whether the generation is grounded in the document and answers the question.
    """
    print("---CHECK HALLUCINATIONS---")
    question = state["question"]
    documents = state["documents"]
    generation = state["generation"]
    generation_count = state.get("generation_count")  # Use state.get to avoid KeyError
    print(f" generation number:  {generation_count}")
    
    # Grading hallucinations
    score = hallucination_grader.invoke(
        {"documents": documents, "generation": generation}
    )
    grade = getattr(score, 'score', None)

    # Check hallucination
    if grade == "yes":
        print("---DECISION: GENERATION IS GROUNDED IN DOCUMENTS---")
        # Check question-answering
        print("---GRADE GENERATION vs QUESTION---")
        score = answer_grader.invoke({"question": question, "generation": generation})
        grade = getattr(score, 'score', None)
        if grade == "yes":
            print("---DECISION: GENERATION ADDRESSES QUESTION---")
            return "useful"
        else:
            print("---DECISION: GENERATION DOES NOT ADDRESS QUESTION---")
            return "not useful"
    else:
        if generation_count > 1:
            print("---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, TRANSFORM QUERY---")
              # Reset count if it exceeds limit
            return "not useful"
        else:
            print("---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, RE-TRY---")
             # Increment correctly here
            print(f" generation number after increment:  {state['generation_count']}")
            return "not supported"
    

def ask_question(state):
    """
    Initialize question
    Args:
        state (dict): The current graph state
    Returns:
        state (dict): Question
    """
    steps = state["steps"]
    question = state["question"]
    generations_count = state.get("generations_count", 0) 
    
    
    steps.append("question_asked")
    return {"question": question, "steps": steps,"generation_count": generations_count}
        
        
def retrieve(state , retriever):
    """
    Retrieve documents
    Args:
        state (dict): The current graph state
        retriever: The retriever object
    Returns:
        state (dict): New key added to state, documents, that contains retrieved documents
    """
    steps = state["steps"]
    question = state["question"]
   
    documents = retriever.invoke(question)
    
    steps.append("retrieve_documents")
    return {"documents": documents, "question": question, "steps": steps}


def generate(state,QA_chain):
    """
    Generate answer
    """
    question = state["question"]
    documents = state["documents"]
    generation = QA_chain.stream({"documents": documents, "question": question})
    steps = state["steps"]
    steps.append("generate_answer")
    generation_count = state["generation_count"]
    
    generation_count += 1
        
    return {
        "documents": documents,
        "question": question,
        "generation": generation,
        "steps": steps,
        "generation_count": generation_count  # Include generation_count in return
    }


def grade_documents(state, retrieval_grader):
    question = state["question"]
    documents = state["documents"]
    steps = state["steps"]
    steps.append("grade_document_retrieval")
    
    filtered_docs = []
    web_results_list = []
    search = "No"
    
    for d in documents:
        # Call the grading function
        score = retrieval_grader.invoke({"question": question, "documents": d})
        print(f"Grader output for document: {score}")  # Detailed debugging output
        
        # Extract the grade
        grade = getattr(score, 'binary_score', None)
        if grade and grade.lower() in ["yes", "true", "1",'taip']:
            filtered_docs.append(d)
        elif len(filtered_docs) < 4:  
            search = "Yes"
            
    # Check the decision-making process
    print(f"Final decision - Perform web search: {search}")
    print(f"Filtered documents count: {len(filtered_docs)}")
    
    return {
        "documents": filtered_docs,
        "question": question,
        "search": search,
        "steps": steps,
    }

def clean_exa_document(doc):
    """
    Extracts and retains only the title, url, text, and summary from the exa result document.
    """
    return {
        "            Pavadinimas:    ": doc.title,
        "            Apibendrinimas:    ": doc.summary,
        "            Straipnsio internetinis adresas:    ": doc.url,
        "            Tekstas:    ": doc.text
                                        
    }

def web_search(state):
    question = state["question"]
    documents = state.get("documents", [])
    steps = state["steps"]
    steps.append("web_search")
    k = 8 - len(documents)
    web_results_list = []

    # Fetch results from exa
    exa_results_raw = exa.search_and_contents(
        query=question,
        start_published_date="2018-01-01T22:00:01.000Z",

        type="keyword",
        num_results=2,
        text={"max_characters": 7000},
        summary={
            "query": "Tell in summary a meaning about what is article written. This summary has to be written in a way to be related to {question}  Provide facts, be concise. Do it in Lithuanian language."
        },
        include_domains=[ "infolex.lt", "vmi.lt", "lrs.lt", "e-seimas.lrs.lt", "teise.pro",'lt.wikipedia.org', 'teismai.lt' ],
        
    )
    # Extract results
    exa_results = exa_results_raw.results if hasattr(exa_results_raw, "results") else []
    cleaned_exa_results = [clean_exa_document(doc) for doc in exa_results]

    if len(cleaned_exa_results) <1:
        web_results = GoogleSerperAPIWrapper(k=2, gl="lt", hl="lt", type="search").results(question)
        formatted_documents = format_google_results_search(web_results)
        web_results_list.extend(formatted_documents if isinstance(formatted_documents, list) else [formatted_documents])

        combined_documents = documents + cleaned_exa_results +web_results_list
        
    
    else:
        combined_documents = documents + cleaned_exa_results 
  
    
    
    

    
    

    return {"documents": combined_documents, "question": question, "steps": steps}

def decide_to_generate(state):
    """
    Determines whether to generate an answer, or re-generate a question.
    Args:
        state (dict): The current graph state
    Returns:
        str: Binary decision for next node to call
    """
    search = state["search"]
    if search == "Yes":
        return "search"
    else:
        return "generate"
    
def decide_to_generate2(state):
    """
    Determines whether to generate an answer, or re-generate a question.
    Args:
        state (dict): The current graph state
    Returns:
        str: Binary decision for next node to call
    """
    search = state["search"]
    if search == "Yes":
        return "search"
    else:
        return "generate"