Spaces:
Sleeping
Sleeping
File size: 28,532 Bytes
d355eed 3878d0b d355eed 3878d0b d355eed 3878d0b 2c31d84 3878d0b d355eed b6b2a43 d355eed b6b2a43 d355eed b6b2a43 d355eed b6b2a43 d355eed b6b2a43 d355eed b6b2a43 d355eed b6b2a43 d355eed b6b2a43 d355eed cc3c654 d355eed cc3c654 d355eed cc3c654 d355eed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 |
import os
import streamlit as st
from typing_extensions import TypedDict, List
from IPython.display import Image, display
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain.schema import Document
from langgraph.graph import START, END, StateGraph
from langchain.prompts import PromptTemplate
import uuid
from langchain_groq import ChatGroq
from langchain_community.utilities import GoogleSerperAPIWrapper
from langchain_chroma import Chroma
from langchain_community.document_loaders import NewsURLLoader
from langchain_community.retrievers.wikipedia import WikipediaRetriever
from sentence_transformers import SentenceTransformer
from langchain.vectorstores import Chroma
from langchain_community.document_loaders import UnstructuredURLLoader, NewsURLLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_core.output_parsers import JsonOutputParser
from langchain_community.vectorstores.utils import filter_complex_metadata
from langchain.schema import Document
from langchain_community.document_loaders.directory import DirectoryLoader
from langchain.document_loaders import TextLoader
from langgraph.graph import START, END, StateGraph
from langchain.retrievers import WebResearchRetriever
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from exa_py import Exa
os.environ["LANGCHAIN_TRACING_V2"]="true"
os.environ["LANGCHAIN_ENDPOINT"]= "https://api.smith.langchain.com"
os.environ["LANGCHAIN_PROJECT"] = "Civilinės_teises_Asistente_V1_Embed"
lang_api_key = os.getenv("LANGCHAIN_API_KEY")
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
groq_api_key = os.getenv("GROQ_API_KEY")
exa_api_key = os.getenv("exa_api_key")
exa = Exa(api_key="exa_api_key")
def create_retriever_from_chroma(vectorstore_path="docs/chroma/", search_type='mmr', k=7, chunk_size=300, chunk_overlap=30):
model_name = "Alibaba-NLP/gte-multilingual-base"
model_kwargs = {'device': 'cpu',
"trust_remote_code" : 'False'}
encode_kwargs = {'normalize_embeddings': True}
embeddings = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
if os.path.exists(vectorstore_path) and os.listdir(vectorstore_path):
vectorstore = Chroma(persist_directory=vectorstore_path,embedding_function=embeddings)
else:
st.write("Vector store doesnt exist and will be created now")
loader = DirectoryLoader('./data/', glob="./*.txt", loader_cls=TextLoader)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=chunk_size, chunk_overlap=chunk_overlap,
separators=["\n\n \n\n","\n\n\n", "\n\n", r"In \[[0-9]+\]", r"\n+", r"\s+"],
is_separator_regex = True
)
split_docs = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(
documents=split_docs, embedding=embeddings, persist_directory=vectorstore_path,
)
retriever=vectorstore.as_retriever(search_type = search_type, search_kwargs={"k": k})
return retriever
async def handle_userinput(user_question, custom_graph):
# Add the user's question to the chat history and display it in the UI
st.session_state.messages.append({"role": "user", "content": user_question})
st.chat_message("user").write(user_question)
# Config setup (if required for the graph)
config = {"configurable": {"thread_id": str(uuid.uuid4())}}
try:
# Await the asynchronous invocation of the custom graph
state_dict = await custom_graph.ainvoke({"question": user_question, "steps": []}, config)
# Extract documents from the state dictionary
docs = state_dict.get("documents", [])
with st.sidebar:
st.subheader("Dokumentai, kuriuos Birutė gavo kaip kontekstą")
with st.spinner("Kraunama..."):
for doc in docs:
# Display each document
st.write(f"Dokumentas: {doc}")
# Check for and display the assistant's response
response = state_dict.get("generation")
if response:
st.session_state.messages.append({"role": "assistant", "content": response})
st.chat_message("assistant").write(response)
except Exception as e:
# Display an error message in case of failure
st.chat_message("assistant").write("Klaida: Arba per didelis kontekstas suteiktas modeliui, arba užklausų serveryje yra per daug")
from typing import Annotated
def create_workflow(retriever):
class GraphState(TypedDict):
"""
Represents the state of our graph.
Attributes:
question: question
generation: LLM generation
search: whether to add search
documents: list of documents
generations_count : generations count
"""
question: Annotated[str, "Single"] # Ensuring only one value per step
generation: str
search: str
documents: List[str]
steps: List[str]
generation_count: int
llm = ChatGroq(
model="llama-3.3-70b-versatile",
temperature=0.2,
max_tokens=600,
max_retries=3,
)
llm_checker = ChatGroq(
model="llama3-groq-70b-8192-tool-use-preview",
temperature=0.1,
max_tokens=400,
max_retries=3,
)
workflow = StateGraph(GraphState)
# Define the nodes
workflow.add_node("ask_question", lambda state: ask_question(state))
workflow.add_node("retrieve", lambda state: retrieve(state, retriever))
workflow.add_node("grade_documents", lambda state: grade_documents(state, retrieval_grader_grader(llm_checker)))
workflow.add_node("generate", lambda state: generate(state, QA_chain(llm)))
workflow.add_node("web_search", web_search)
#workflow.add_node("transform_query", lambda state: transform_query(state, create_question_rewriter(llm)))
# Build graph
workflow.set_entry_point("ask_question")
workflow.add_edge("ask_question", "retrieve")
workflow.add_edge("retrieve", "grade_documents")
#workflow.add_edge("retrieve", "generate")
workflow.add_conditional_edges(
"grade_documents",
decide_to_generate,
{
"search": "web_search",
"generate": "generate",
},
)
workflow.add_edge("web_search", "generate")
workflow.add_edge("generate", END)
custom_graph = workflow.compile()
return custom_graph
def retrieval_grader_grader(llm):
"""
Function to create a grader object using a passed LLM model.
Args:
llm: The language model to be used for grading.
Returns:
Callable: A pipeline function that grades relevance based on the LLM.
"""
class GradeDocuments(BaseModel):
"""Ar faktas gali būti, nors truputi, naudingas atsakant į klausimą."""
binary_score: str = Field(
description="Documentai yra aktualūs klausimui, 'yes' arba 'no'"
)
# Create the structured LLM grader using the passed LLM
structured_llm_grader = llm.with_structured_output(GradeDocuments)
# Define the prompt template
prompt = PromptTemplate(
template="""Jūs esate mokytojas, vertinantis viktoriną. Jums bus suteikta:
1/ KLAUSIMAS {question}
2/ Studento pateiktas FAKTAS {documents}
Jūs vertinate RELEVANCE RECALL:
yes reiškia, kad FAKTAS yra susijęs su KLAUSIMU.
no reiškia, kad FAKTAS nesusijęs su KLAUSIMU.
yes yra aukščiausias (geriausias) balas. no yra žemiausias balas, kurį galite duoti.
Jeigu galima iš Studento pateiktas FAKTAS gauti bet kokių įžvalgu susijusiu su KLAUSIMAS, duok įvertinimą yes.
Žingsnis po žingsnio paaiškinkite savo samprotavimus. Įsitikinkite, kad jūsų samprotavimai ir išvados yra teisingi.
Iš pradžių venkite tiesiog nurodyti teisingą atsakymą.
Klausimas: {question} \n
FAKTAS: \n\n {documents} \n\n
Suteikite dvejetainį balą „yes“ arba „no“, kad nurodytumėte, ar dokumentas yra susijęs su klausimu. \n
Pateikite dvejetainį balą kaip JSON su vienu raktu „balu“ ir be įžangos ar paaiškinimo.
""",
input_variables=['documents', 'question'],
)
# Combine the prompt with the structured LLM grader
retrieval_grader = prompt | structured_llm_grader
# Return the grader object
return retrieval_grader
def create_toxicity_checker(llm):
"""
Function to create a toxicity checker object using a passed LLM model.
Args:
llm: The language model to be used for toxicity checking.
Returns:
Callable: A pipeline function that checks for toxicity based on the LLM.
"""
# Define the class for toxicity check inside the function
class PromtGuard(BaseModel):
"""Binary score for toxicity check on question."""
score: str = Field(
description="Ar klausimams yra nesaugus, 'taip' arba 'ne'"
)
# Create the structured LLM toxicity checker using the passed LLM
# Create the structured LLM grader using the passed LLM
structured_llm_toxicity_checker = llm.with_structured_output(PromtGuard)
# Define the prompt template
prompt = PromptTemplate(
template="""Jūs esate klasifikatorius, kuris įvertins tekstą pagal pateiktus kriterijus.
Čia pateikiami taškų kriterijai:
(1) įžeidinėjimai
(2) grasinimai
(3) labai neigiami komentarai
(4) bet kokią asmenį identifikuojančią informaciją, pvz., API raktus
Rezultatas:
„Taip“ reiškia, kad tekstas atitinka BET KOKĮ kriterijų.
Įvertinimas „ne“ reiškia, kad tekstas neatitinka VISŲ kriterijų.
Štai klausimas: {question}
Suteikite dvejetainį balą „taip“ arba „ne“, kad nurodytumėte, ar atsakymas yra naudingas norint išspręsti klausimą.
Jei atsakyme yra pasikartojančių frazių, kartojimas, tada grąžinkite „ne“\n
Pateikite dvejetainį balą kaip JSON su vienu raktu „balu“ ir be įžangos ar paaiškinimo.""",
input_variables=["question"],
)
# Combine the prompt with the structured LLM toxicity checker
toxicity_grader = prompt | structured_llm_toxicity_checker
# Return the toxicity checker object
return toxicity_grader
def grade_question_toxicity(state, toxicity_grader):
"""
Grades the question for toxicity.
Args:
state (dict): The current graph state.
Returns:
str: 'good' if the question passes the toxicity check, 'bad' otherwise.
"""
steps = state["steps"]
steps.append("promt guard")
score = toxicity_grader.invoke({"question": state["question"]})
grade = getattr(score, 'score', None)
if grade == "yes":
return "bad"
else:
return "good"
def create_helpfulness_checker(llm):
"""
Function to create a helpfulness checker object using a passed LLM model.
Args:
llm: The language model to be used for checking the helpfulness of answers.
Returns:
Callable: A pipeline function that checks if the student's answer is helpful.
"""
class helpfulness_checker(BaseModel):
"""Binary score for toxicity check on question."""
score: str = Field(
description="Ar atsakymas yra naudingas?, 'taip' arba 'ne'"
)
# Create the structured LLM toxicity checker using the passed LLM
structured_llm_helpfulness_checker = llm.with_structured_output(helpfulness_checker)
# Create the structured LLM helpfulness checker using the passed LLM
# Define the prompt template
prompt = PromptTemplate(
template="""Jums bus pateiktas KLAUSIMAS {question} ir ATSAKYMAS {generation}.
Įvertinkite ATSAKYMĄ pagal šiuos kriterijus:
Aktualumas: ATSAKYMAS turi būti tiesiogiai susijęs su KLAUSIMU ir konkrečiai į jį atsakyti.
Pakankamas: ATSAKYME turi būti pakankamai informacijos, kad būtų galima visapusiškai atsakyti į KLAUSIMĄ. Jei ATSAKYME vartojamos tokios frazės kaip „nežinau“, „neturiu pakankamai informacijos“, „pateiktuose dokumentuose apie tai neužsimenama“ ar panašių posakių, kuriuose vengiama tiesiogiai atsakyti į KLAUSIMĄ, įvertinkite „ne“.
Aiškumas ir glaustumas: ATSAKYMAS turi būti aiškus, be jokių nereikalingų frazių ar pasikartojimų. Jei jame yra perteklinė arba netiesioginė informacija, o ne tiesioginis atsakymas, įvertinkite „ne“.
Balų skaičiavimo instrukcijos:
„Taip“ reiškia, kad ATSAKYMAS atitinka visus šiuos kriterijus ir tiesiogiai susijęs su KLAUSIMU.
Įvertinimas „ne“ reiškia, kad ATSAKYMAS neatitinka visų šių kriterijų.
Jei randate tokio žodžio tekstą, kaip aš nežinau, nepakanka informacijos arba panašaus į šį, balas yra ne.
Pateikite balą kaip JSON su vienu raktu "balas" ir be papildomo teksto""",
input_variables=["generation", "question"]
)
# Combine the prompt with the structured LLM helpfulness checker
helpfulness_grader = prompt | structured_llm_helpfulness_checker
# Return the helpfulness checker object
return helpfulness_grader
def create_hallucination_checker(llm):
"""
Function to create a hallucination checker object using a passed LLM model.
Args:
llm: The language model to be used for checking hallucinations in the student's answer.
Returns:
Callable: A pipeline function that checks if the student's answer contains hallucinations.
"""
class hallucination_checker(BaseModel):
"""Binary score for toxicity check on question."""
score: str = Field(
description="Ar dokumentas yra susijes su atsakymu?, 'taip' arba 'ne'"
)
# Create the structured LLM toxicity checker using the passed LLM
structured_llm_hallucination_checker = llm.with_structured_output(hallucination_checker)
# Define the prompt template
prompt = PromptTemplate(
template="""Jūs esate mokytojas, vertinantis viktoriną.
Jums bus pateikti FAKTAI ir MOKINIO ATSAKYMAS.
Jūs vertinate MOKINIO ATSAKYMĄ iš šaltinio FAKTAI. Sutelkite dėmesį į MOKINIO ATSAKYMO teisingumą ir bet kokių haliucinacijų aptikimą.
Įsitikinkite, kad MOKINIO ATSAKYMAS atitinka šiuos kriterijus:
(1) jame nėra informacijos, nesusijusios su FAKTAIS
(2) STUDENTŲ ATSAKYMAS turėtų būti visiškai pagrįstas ir pagrįstas pirminiuose dokumentuose pateikta informacija
Rezultatas:
„Taip“ reiškia, kad studento atsakymas atitinka visus kriterijus. Tai aukščiausias (geriausias) balas.
Balas „ne“ reiškia, kad studento atsakymas neatitinka visų kriterijų. Tai yra žemiausias galimas balas, kurį galite duoti.
Žingsnis po žingsnio paaiškinkite savo samprotavimus, kad įsitikintumėte, jog argumentai ir išvados yra teisingi.
Iš pradžių venkite tiesiog nurodyti teisingą atsakymą.
MOKINIO ATSAKYMAS: {generation} \n
FAKTAI: \n\n {documents} \n\n
Suteikite dvejetainį balą „taip“ arba „ne“, kad nurodytumėte, ar dokumentas yra susijęs su klausimu. \n
Pateikite dvejetainį balą kaip JSON su vienu raktu „balu“ ir be įžangos ar paaiškinimo.""",
input_variables=["generation", "documents"],
)
# Combine the prompt with the structured LLM hallucination checker
hallucination_grader = prompt | structured_llm_haliucinations_checker
# Return the hallucination checker object
return hallucination_grader
def create_question_rewriter(llm):
"""
Function to create a question rewriter object using a passed LLM model.
Args:
llm: The language model to be used for rewriting questions.
Returns:
Callable: A pipeline function that rewrites questions for optimized vector store retrieval.
"""
# Define the prompt template for question rewriting
re_write_prompt = PromptTemplate(
template="""Esate klausimų perrašytojas, kurio specializacija yra Lietuvos teisė, tobulinanti klausimus, kad būtų galima optimizuoti jų paiešką iš teisinių dokumentų. Jūsų tikslas – išaiškinti teisinę intenciją, pašalinti dviprasmiškumą ir pakoreguoti formuluotes taip, kad jos atspindėtų teisinę kalbą, daugiausia dėmesio skiriant atitinkamiems raktiniams žodžiams, siekiant užtikrinti tikslų informacijos gavimą iš Lietuvos teisės šaltinių.
Man nereikia paaiškinimų, tik perrašyto klausimo.
Štai pradinis klausimas: \n\n {question}. Patobulintas klausimas be paaiškinimų : \n""",
input_variables=["question"],
)
# Combine the prompt with the LLM and output parser
question_rewriter = re_write_prompt | llm | StrOutputParser()
# Return the question rewriter object
return question_rewriter
def transform_query(state, question_rewriter):
"""
Transform the query to produce a better question.
Args:
state (dict): The current graph state
Returns:
state (dict): Updates question key with a re-phrased question
"""
print("---TRANSFORM QUERY---")
question = state["question"]
documents = state["documents"]
steps = state["steps"]
steps.append("question_transformation")
# Re-write question
better_question = question_rewriter.invoke({"question": question})
print(f" Transformed question: {better_question}")
return {"documents": documents, "question": better_question}
def format_google_results_search(google_results):
formatted_documents = []
# Extract data from answerBox
answer_box = google_results.get("answerBox", {})
answer_box_title = answer_box.get("title", "No title")
answer_box_answer = answer_box.get("answer", "No text")
# Extract and add organic results as separate Documents
for result in google_results.get("organic", []):
title = result.get("title", "No title")
link = result.get("link", "Nėra svetainės adreso")
snippet = result.get("snippet", "No snippet available")
document = Document(
metadata={
"Organinio rezultato pavadinimas": title,
},
page_content=(
f"Pavadinimas: {title} "
f"Straipsnio ištrauka: {snippet} "
f"Nuoroda: {link} "
)
)
formatted_documents.append(document)
return formatted_documents
def format_google_results_news(google_results):
formatted_documents = []
# Loop through each organic result and create a Document for it
for result in google_results['organic']:
title = result.get('title', 'No title')
link = result.get('link', 'No link')
descripsion = result.get('description', 'No link')
snippet = result.get('snippet', 'No summary available')
text = result.get('text' , 'no text')
# Create a Document object with similar metadata structure to WikipediaRetriever
document = Document(
metadata={
'Title': title,
'Description': descripsion,
'Text' : text,
'Snippet': snippet,
'Source': link
},
page_content=snippet # Using the snippet as the page content
)
formatted_documents.append(document)
return formatted_documents
def QA_chain(llm):
"""
Creates a question-answering chain using the provided language model.
Args:
llm: The language model to use for generating answers.
Returns:
An LLMChain configured with the question-answering prompt and the provided model.
"""
# Define the prompt template
prompt = PromptTemplate(
template="""Esi teisės asistentas, kurio užduotis yra atsakyti konkrečiai, informatyviai ir glaustai , pagrindžiant savo atsakymą į klausima pagal pateiktus dokumentus.
Atsakymas turi būti lietuvių kalba. Nesikartok.
Jei negali atsakyti į klausimą, pasakyk, Atsiprašau, nežinau atsakymo į jūsų klausimą.
Neužduok papildomų klausimų.
Klausimas: {question}
Dokumentai: {documents}
Atsakymas:
""",
input_variables=["question", "documents"],
)
rag_chain = prompt | llm | StrOutputParser()
return rag_chain
def grade_generation_v_documents_and_question(state,hallucination_grader,answer_grader ):
"""
Determines whether the generation is grounded in the document and answers the question.
"""
print("---CHECK HALLUCINATIONS---")
question = state["question"]
documents = state["documents"]
generation = state["generation"]
generation_count = state.get("generation_count") # Use state.get to avoid KeyError
print(f" generation number: {generation_count}")
# Grading hallucinations
score = hallucination_grader.invoke(
{"documents": documents, "generation": generation}
)
grade = getattr(score, 'score', None)
# Check hallucination
if grade == "yes":
print("---DECISION: GENERATION IS GROUNDED IN DOCUMENTS---")
# Check question-answering
print("---GRADE GENERATION vs QUESTION---")
score = answer_grader.invoke({"question": question, "generation": generation})
grade = getattr(score, 'score', None)
if grade == "yes":
print("---DECISION: GENERATION ADDRESSES QUESTION---")
return "useful"
else:
print("---DECISION: GENERATION DOES NOT ADDRESS QUESTION---")
return "not useful"
else:
if generation_count > 1:
print("---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, TRANSFORM QUERY---")
# Reset count if it exceeds limit
return "not useful"
else:
print("---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, RE-TRY---")
# Increment correctly here
print(f" generation number after increment: {state['generation_count']}")
return "not supported"
def ask_question(state):
"""
Initialize question
Args:
state (dict): The current graph state
Returns:
state (dict): Question
"""
steps = state["steps"]
question = state["question"]
generations_count = state.get("generations_count", 0)
steps.append("question_asked")
return {"question": question, "steps": steps,"generation_count": generations_count}
def retrieve(state , retriever):
"""
Retrieve documents
Args:
state (dict): The current graph state
retriever: The retriever object
Returns:
state (dict): New key added to state, documents, that contains retrieved documents
"""
steps = state["steps"]
question = state["question"]
documents = retriever.invoke(question)
steps.append("retrieve_documents")
return {"documents": documents, "question": question, "steps": steps}
def generate(state,QA_chain):
"""
Generate answer
"""
question = state["question"]
documents = state["documents"]
generation = QA_chain.stream({"documents": documents, "question": question})
steps = state["steps"]
steps.append("generate_answer")
generation_count = state["generation_count"]
generation_count += 1
return {
"documents": documents,
"question": question,
"generation": generation,
"steps": steps,
"generation_count": generation_count # Include generation_count in return
}
async def grade_documents(state, retrieval_grader):
question = state["question"]
documents = state["documents"]
steps = state["steps"]
steps.append("grade_document_retrieval")
filtered_docs = []
web_results_list = []
search = "No"
for d in documents:
# Call the grading function
score = await retrieval_grader.ainvoke({"question": question, "documents": d})
print(f"Grader output for document: {score}") # Detailed debugging output
# Extract the grade
grade = getattr(score, 'binary_score', None)
if grade and grade.lower() in ["yes", "true", "1",'taip']:
filtered_docs.append(d)
elif len(filtered_docs) < 4:
search = "Yes"
# Check the decision-making process
print(f"Final decision - Perform web search: {search}")
print(f"Filtered documents count: {len(filtered_docs)}")
return {
"documents": filtered_docs,
"question": question,
"search": search,
"steps": steps,
}
def clean_exa_document(doc):
"""
Extracts and retains only the title, url, text, and summary from the exa result document.
"""
return {
" Pavadinimas: ": doc.title,
" Apibendrinimas: ": doc.summary,
" Straipnsio internetinis adresas: ": doc.url,
" Tekstas: ": doc.text
}
def web_search(state):
question = state["question"]
documents = state.get("documents", [])
steps = state["steps"]
steps.append("web_search")
k = 8 - len(documents)
web_results_list = []
# Fetch results from exa
exa_results_raw = exa.search_and_contents(
query=question,
start_published_date="2018-01-01T22:00:01.000Z",
type="keyword",
num_results=2,
text={"max_characters": 7000},
summary={
"query": "Tell in summary a meaning about what is article written. This summary has to be written in a way to be related to {question} Provide facts, be concise. Do it in Lithuanian language."
},
include_domains=[ "infolex.lt", "vmi.lt", "lrs.lt", "e-seimas.lrs.lt", "teise.pro",'lt.wikipedia.org', 'teismai.lt' ],
)
# Extract results
exa_results = exa_results_raw.results if hasattr(exa_results_raw, "results") else []
cleaned_exa_results = [clean_exa_document(doc) for doc in exa_results]
if len(cleaned_exa_results) <1:
web_results = GoogleSerperAPIWrapper(k=2, gl="lt", hl="lt", type="search").results(question)
formatted_documents = format_google_results_search(web_results)
web_results_list.extend(formatted_documents if isinstance(formatted_documents, list) else [formatted_documents])
combined_documents = documents + cleaned_exa_results +web_results_list
else:
combined_documents = documents + cleaned_exa_results
return {"documents": combined_documents, "question": question, "steps": steps}
def decide_to_generate(state):
"""
Determines whether to generate an answer, or re-generate a question.
Args:
state (dict): The current graph state
Returns:
str: Binary decision for next node to call
"""
search = state["search"]
if search == "Yes":
return "search"
else:
return "generate"
def decide_to_generate2(state):
"""
Determines whether to generate an answer, or re-generate a question.
Args:
state (dict): The current graph state
Returns:
str: Binary decision for next node to call
"""
search = state["search"]
if search == "Yes":
return "search"
else:
return "generate" |