File size: 4,980 Bytes
b3b8331
 
 
 
 
 
 
dff0a3a
b3b8331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67037c0
bae53d6
67037c0
b3b8331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bae53d6
67037c0
b3b8331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import streamlit as st
from PIL import Image
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
from streamlit_extras.app_logo import add_logo


def logo():
	add_logo("vocali_logo.jpg", height=300)


def get_result_text_es_pt (list_entity, text, lang):
    result_words = []
    if lang == "es":
        punc_tags = ['¿', '?', '¡', '!', ',', '.', ':']
    else:
        punc_tags = ['?', '!', ',', '.', ':']
    
    for entity in list_entity: 
        tag = entity["entity"]
        word = entity["word"]
        start = entity["start"]
        end = entity["end"]
        
        # check punctuation
        punc_in = next((p for p in punc_tags if p in tag), "")
                
        subword = False
        # check subwords
        if word[0] == "#": 
            subword = True
            if punc_in != "":
                word = result_words[-1].replace(punc_in, "") + text[start:end]
            else: 
                word = result_words[-1] + text[start:end]
        
        if tag == "l": 
            word = word 
        elif tag == "u":
            word = word.capitalize()
        # case with punctuation
        else:
            if tag[-1] == "l":
                word = (punc_in + word) if punc_in in ["¿", "¡"] else (word + punc_in)
            elif tag[-1] == "u":
                word = (punc_in + word.capitalize()) if punc_in in ["¿", "¡"] else (word.capitalize() + punc_in)     
        
        if tag != "l":
            word = '<span style="font-weight:bold; color:rgb(142, 208, 129);">' + word + '</span>''
		
        if subword == True: 
            result_words[-1] = word
        else:
            result_words.append(word)

    return " ".join(result_words)
            


def get_result_text_ca (list_entity, text):
    result_words = []
    punc_tags = ['?', '!', ',', '.', ':']
    
    for entity in list_entity: 
        start = entity["start"]
        end = entity["end"]
        tag = entity["entity"]
        word = entity["word"]
        
        # check punctuation
        punc_in = next((p for p in punc_tags if p in tag), "")
                
        subword = False
        # check subwords
        if word[0] != "Ġ": 
            subword = True
            if punc_in != "":
                word = result_words[-1].replace(punc_in, "") + text[start:end]
            else: 
                word = result_words[-1] + text[start:end]
        else: 
            word = text[start:end]
        
        if tag == "l": 
            word = word 
        elif tag == "u":
            word = word.capitalize()
        # case with punctuation
        else:
            if tag[-1] == "l":
                word = (punc_in + word) if punc_in in ["¿", "¡"] else (word + punc_in)
            elif tag[-1] == "u":
                word = (punc_in + word.capitalize()) if punc_in in ["¿", "¡"] else (word.capitalize() + punc_in)     
        if tag != "l":
            word = '<span style="font-weight:bold; color:rgb(142, 208, 129);">' + word + '</span>'
			
        if subword == True: 
            result_words[-1] = word
        else:
            result_words.append(word)

    return " ".join(result_words)
	

if __name__ == "__main__":
	logo()
	st.title('Sanivert Punctuation And Capitalization Restoration')
	
	model_es = AutoModelForTokenClassification.from_pretrained("VOCALINLP/spanish_capitalization_punctuation_restoration_sanivert")
    tokenizer_es = AutoTokenizer.from_pretrained("VOCALINLP/spanish_capitalization_punctuation_restoration_sanivert")
	pipe_es = pipeline("token-classification", model=model_es, tokenizer=tokenizer_es)
	
	model_ca = ModelForTokenClassification.from_pretrained("VOCALINLP/catalan_capitalization_punctuation_restoration_sanivert")
    tokenizer_ca = AutoTokenizer.from_pretrained("VOCALINLP/catalan_capitalization_punctuation_restoration_sanivert")
	pipe_ca = pipeline("token-classification", model=model_ca, tokenizer=tokenizer_ca)
	
	model_pt = AutoModelForTokenClassification.from_pretrained("VOCALINLP/portuguese_capitalization_punctuation_restoration_sanivert")
    tokenizer_pt = AutoTokenizer.from_pretrained("VOCALINLP/portuguese_capitalization_punctuation_restoration_sanivert")
	pipe_pt = pipeline("token-classification", model=model_ca, tokenizer=tokenizer_ca)
	
	input_text = st.selectbox(
      label = "Choose an language",
      options = ["Spanish", "Portuguese", "Catalan"]
	)
	
	st.subheader("Enter the text to be analyzed.")
	text = st.text_input('Enter text') #text is stored in this variable    
	if input_text == "Spanish": 
		result_pipe = pipe_es(text)
		out = get_result_text_es_pt(result_pipe, text, "es")
	elif input_text == "Portuguese": 
		result_pipe = pipe_pt(text)
		out = get_result_text_es_pt(result_pipe, text, "pt")
	elif input_text == "Catalan": 
		result_pipe = pipe_ca(text)
		out = get_result_text_ca(result_pipe, text)
	
	out = get_prediction(text, input_text)
	st.markdown(out, unsafe_allow_html=True)
	text = ""