Spaces:
Paused
Paused
File size: 1,101 Bytes
6f6b73c 95c282c 6f6b73c 95c282c 6f6b73c 95c282c 6f6b73c 95c282c 6f6b73c 95c282c 6f6b73c 95c282c 6f6b73c 4592105 6f6b73c 95c282c 6f6b73c 95c282c 6f6b73c 6368a24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import os
token = os.environ.get("HUGGING_FACE_TOKEN")
model_name = "microsoft/phi-2"
model = AutoModelForCausalLM.from_pretrained(
model_name,
use_auth_token=token,
trust_remote_code=True
)
model.config.use_cache = False
model.load_adapter("checkpoint_500")
tokenizer = AutoTokenizer.from_pretrained("checkpoint_500", trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
def inference(prompt, count):
count = int(count)
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer)
result = pipe(f"{prompt}",max_new_tokens=count)
output = result[0]['generated_text']
return output
examples = [
["What is deep learning?","50"]
]
demo = gr.Interface(
inference,
inputs = [
gr.Textbox(placeholder="Enter a prompt"),
gr.Textbox(placeholder="Enter number of characters you want to generate")
],
outputs = [
gr.Textbox(label="Generated text")
],
examples = examples
)
demo.launch() |