Spaces:
Sleeping
Sleeping
File size: 28,178 Bytes
99220ed 6b21734 767d463 9c6fa4d 225bf42 472f4fa 297bd17 068e84d 2070fbb 9dee841 84c3fd4 ccdfbe8 84c3fd4 e0e7fd6 5fde50b a563a42 472f4fa 9dee841 a563a42 9dee841 f7dcaaa e0e7fd6 366078f e0e7fd6 9dee841 9e75c6e a563a42 366078f 225bf42 366078f 225bf42 5fde50b 84c3fd4 2070fbb 9e75c6e 0ba53c8 84c3fd4 dbb2b74 84c3fd4 ccdfbe8 84c3fd4 a563a42 84c3fd4 ccdfbe8 e0e7fd6 a563a42 9e75c6e e0e7fd6 472f4fa 366078f 84c3fd4 366078f 84c3fd4 472f4fa 84c3fd4 472f4fa e0e7fd6 a563a42 e0e7fd6 a563a42 e0e7fd6 a563a42 e0e7fd6 6b21734 9dee841 366078f 99220ed 2070fbb 27b0b20 2070fbb 27b0b20 2070fbb 068e84d 472f4fa 068e84d e0e7fd6 2070fbb 068e84d e0e7fd6 068e84d 27b0b20 e0e7fd6 27b0b20 6b21734 a88e67a 225bf42 6b21734 a563a42 366078f 99220ed 472f4fa a563a42 472f4fa 366078f 472f4fa a563a42 366078f a563a42 dbb2b74 a563a42 472f4fa a563a42 6b21734 84c3fd4 56c280b 6b21734 84c3fd4 6b21734 84c3fd4 6b21734 9dee841 84c3fd4 ccdfbe8 84c3fd4 ccdfbe8 84c3fd4 ccdfbe8 84c3fd4 5fde50b a563a42 84c3fd4 9e75c6e 84c3fd4 e0e7fd6 84c3fd4 a563a42 84c3fd4 a563a42 e0e7fd6 366078f e0e7fd6 366078f e0e7fd6 84c3fd4 472f4fa 366078f a563a42 366078f dbb2b74 366078f 74406b7 a563a42 5fde50b e0e7fd6 5fde50b 84c3fd4 5fde50b 84c3fd4 74406b7 84c3fd4 068e84d 9dee841 84c3fd4 9dee841 84c3fd4 9dee841 84c3fd4 9dee841 84c3fd4 9dee841 84c3fd4 5fde50b 84c3fd4 74406b7 84c3fd4 366078f 84c3fd4 472f4fa 84c3fd4 472f4fa d401faa 472f4fa 6b21734 5fde50b 9e75c6e 74406b7 84c3fd4 6b21734 74406b7 84c3fd4 9e75c6e 74406b7 84c3fd4 74406b7 84c3fd4 366078f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
import streamlit as st
from transformers import T5ForConditionalGeneration, T5Tokenizer
import spacy
import nltk
from sklearn.feature_extraction.text import TfidfVectorizer
from rake_nltk import Rake
import pandas as pd
from fpdf import FPDF
import wikipediaapi
from functools import lru_cache
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('brown')
from nltk.tokenize import sent_tokenize
nltk.download('wordnet')
from nltk.corpus import wordnet
import random
import sense2vec
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import json
import os
from sentence_transformers import SentenceTransformer, util
import textstat
from spellchecker import SpellChecker
from transformers import pipeline
import re
import pymupdf
import uuid
import time
import asyncio
import aiohttp
# '-----------------'
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.mime.base import MIMEBase
from email import encoders
# '------------------'
print("***************************************************************")
st.set_page_config(
page_icon='cyclone',
page_title="Question Generator",
initial_sidebar_state="auto",
menu_items={
"About" : "Hi this our project."
}
)
st.set_option('deprecation.showPyplotGlobalUse',False)
class QuestionGenerationError(Exception):
"""Custom exception for question generation errors."""
pass
# Initialize Wikipedia API with a user agent
user_agent = 'QGen/1.2'
wiki_wiki = wikipediaapi.Wikipedia(user_agent= user_agent,language='en')
def get_session_id():
if 'session_id' not in st.session_state:
st.session_state.session_id = str(uuid.uuid4())
return st.session_state.session_id
def initialize_state(session_id):
if 'session_states' not in st.session_state:
st.session_state.session_states = {}
if session_id not in st.session_state.session_states:
st.session_state.session_states[session_id] = {
'generated_questions': [],
# add other state variables as needed
}
return st.session_state.session_states[session_id]
def get_state(session_id):
return st.session_state.session_states[session_id]
def set_state(session_id, key, value):
st.session_state.session_states[session_id][key] = value
@st.cache_resource
def load_model(modelname):
model_name = modelname
model = T5ForConditionalGeneration.from_pretrained(model_name)
tokenizer = T5Tokenizer.from_pretrained(model_name)
return model, tokenizer
# Load Spacy Model
@st.cache_resource
def load_nlp_models():
nlp = spacy.load("en_core_web_md")
s2v = sense2vec.Sense2Vec().from_disk('s2v_old')
return nlp, s2v
# Load Quality Assurance Models
@st.cache_resource
def load_qa_models():
# Initialize BERT model for sentence similarity
similarity_model = SentenceTransformer('all-MiniLM-L6-v2')
spell = SpellChecker()
return similarity_model, spell
with st.sidebar:
select_model = st.selectbox("Select Model", ("T5-large","T5-small"))
if select_model == "T5-large":
modelname = "DevBM/t5-large-squad"
elif select_model == "T5-small":
modelname = "AneriThakkar/flan-t5-small-finetuned"
nlp, s2v = load_nlp_models()
similarity_model, spell = load_qa_models()
context_model = similarity_model
model, tokenizer = load_model(modelname)
# Info Section
def display_info():
st.sidebar.title("Information")
st.sidebar.markdown("""
### Question Generator System
This system is designed to generate questions based on the provided context. It uses various NLP techniques and models to:
- Extract keywords from the text
- Map keywords to sentences
- Generate questions
- Provide multiple choice options
- Assess the quality of generated questions
#### Key Features:
- **Keyword Extraction:** Combines RAKE, TF-IDF, and spaCy for comprehensive keyword extraction.
- **Question Generation:** Utilizes a pre-trained T5 model for generating questions.
- **Options Generation:** Creates contextually relevant multiple-choice options.
- **Question Assessment:** Scores questions based on relevance, complexity, and spelling correctness.
- **Feedback Collection:** Allows users to rate the generated questions and provides statistics on feedback.
#### Customization Options:
- Number of beams for question generation
- Context window size for mapping keywords to sentences
- Number of questions to generate
- Additional display elements (context, answer, options, entity link, QA scores)
#### Outputs:
- Generated questions with multiple-choice options
- Download options for CSV and PDF formats
- Visualization of overall scores
""")
def get_pdf_text(pdf_file):
doc = pymupdf.open(stream=pdf_file.read(), filetype="pdf")
text = ""
for page_num in range(doc.page_count):
page = doc.load_page(page_num)
text += page.get_text()
return text
def save_feedback(question, answer, rating, options, context):
feedback_file = 'question_feedback.json'
if os.path.exists(feedback_file):
with open(feedback_file, 'r') as f:
feedback_data = json.load(f)
else:
feedback_data = []
tpl = {
'question' : question,
'answer' : answer,
'context' : context,
'options' : options,
'rating' : rating,
}
# feedback_data[question] = rating
feedback_data.append(tpl)
print(feedback_data)
with open(feedback_file, 'w') as f:
json.dump(feedback_data, f)
return feedback_file
# -----------------------------------------------------------------------------------------
def send_email_with_attachment(email_subject, email_body, recipient_emails, sender_email, sender_password, attachment_path):
msg = MIMEMultipart()
msg['From'] = sender_email
msg['To'] = ", ".join(recipient_emails) # Join the list of recipients with commas
msg['Subject'] = email_subject
msg.attach(MIMEText(email_body, 'plain'))
attachment = open(attachment_path, 'rb')
part = MIMEBase('application', 'octet-stream')
part.set_payload(attachment.read())
encoders.encode_base64(part)
part.add_header('Content-Disposition', f'attachment; filename={os.path.basename(attachment_path)}')
msg.attach(part)
attachment.close()
with smtplib.SMTP('smtp.gmail.com', 587) as server:
server.starttls()
print(sender_email)
print(sender_password)
server.login(sender_email, sender_password)
text = msg.as_string()
server.sendmail(sender_email, recipient_emails, text)
# ----------------------------------------------------------------------------------
# Function to clean text
def clean_text(text):
text = re.sub(r"[^\x00-\x7F]", " ", text)
text = re.sub(f"[\n]"," ", text)
return text
# Function to create text chunks
def segment_text(text, max_segment_length=700, batch_size=7):
sentences = sent_tokenize(text)
segments = []
current_segment = ""
for sentence in sentences:
if len(current_segment) + len(sentence) <= max_segment_length:
current_segment += sentence + " "
else:
segments.append(current_segment.strip())
current_segment = sentence + " "
if current_segment:
segments.append(current_segment.strip())
# Create batches
batches = [segments[i:i + batch_size] for i in range(0, len(segments), batch_size)]
return batches
# Function to extract keywords using combined techniques
def extract_keywords(text, extract_all):
try:
doc = nlp(text)
spacy_keywords = set([ent.text for ent in doc.ents])
spacy_entities = spacy_keywords
print(f"\n\nSpacy Entities: {spacy_entities} \n\n")
# Use Only Spacy Entities
if extract_all is False:
return list(spacy_entities)
# Use RAKE
rake = Rake()
rake.extract_keywords_from_text(text)
rake_keywords = set(rake.get_ranked_phrases())
print(f"\n\nRake Keywords: {rake_keywords} \n\n")
# Use spaCy for NER and POS tagging
spacy_keywords.update([token.text for token in doc if token.pos_ in ["NOUN", "PROPN", "VERB", "ADJ"]])
print(f"\n\nSpacy Keywords: {spacy_keywords} \n\n")
# Use TF-IDF
vectorizer = TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform([text])
tfidf_keywords = set(vectorizer.get_feature_names_out())
print(f"\n\nTFIDF Entities: {tfidf_keywords} \n\n")
# Combine all keywords
combined_keywords = rake_keywords.union(spacy_keywords).union(tfidf_keywords)
return list(combined_keywords)
except Exception as e:
raise QuestionGenerationError(f"Error in keyword extraction: {str(e)}")
def get_similar_words_sense2vec(word, n=3):
# Try to find the word with its most likely part-of-speech
word_with_pos = word + "|NOUN"
if word_with_pos in s2v:
similar_words = s2v.most_similar(word_with_pos, n=n)
return [word.split("|")[0] for word, _ in similar_words]
# If not found, try without POS
if word in s2v:
similar_words = s2v.most_similar(word, n=n)
return [word.split("|")[0] for word, _ in similar_words]
return []
def get_synonyms(word, n=3):
synonyms = []
for syn in wordnet.synsets(word):
for lemma in syn.lemmas():
if lemma.name() != word and lemma.name() not in synonyms:
synonyms.append(lemma.name())
if len(synonyms) == n:
return synonyms
return synonyms
def generate_options(answer, context, n=3):
options = [answer]
# Add contextually relevant words using a pre-trained model
context_embedding = context_model.encode(context)
answer_embedding = context_model.encode(answer)
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
# Compute similarity scores and sort context words
similarity_scores = [util.pytorch_cos_sim(context_model.encode(word), answer_embedding).item() for word in context_words]
sorted_context_words = [word for _, word in sorted(zip(similarity_scores, context_words), reverse=True)]
options.extend(sorted_context_words[:n])
# Try to get similar words based on sense2vec
similar_words = get_similar_words_sense2vec(answer, n)
options.extend(similar_words)
# If we don't have enough options, try synonyms
if len(options) < n + 1:
synonyms = get_synonyms(answer, n - len(options) + 1)
options.extend(synonyms)
# If we still don't have enough options, extract other entities from the context
if len(options) < n + 1:
doc = nlp(context)
entities = [ent.text for ent in doc.ents if ent.text.lower() != answer.lower()]
options.extend(entities[:n - len(options) + 1])
# If we still need more options, add some random words from the context
if len(options) < n + 1:
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
options.extend(random.sample(context_words, min(n - len(options) + 1, len(context_words))))
print(f"\n\nAll Possible Options: {options}\n\n")
# Ensure we have the correct number of unique options
options = list(dict.fromkeys(options))[:n+1]
# Shuffle the options
random.shuffle(options)
return options
# Function to map keywords to sentences with customizable context window size
def map_keywords_to_sentences(text, keywords, context_window_size):
sentences = sent_tokenize(text)
keyword_sentence_mapping = {}
print(f"\n\nSentences: {sentences}\n\n")
for keyword in keywords:
for i, sentence in enumerate(sentences):
if keyword in sentence:
# Combine current sentence with surrounding sentences for context
start = max(0, i - context_window_size)
end = min(len(sentences), i + context_window_size + 1)
context = ' '.join(sentences[start:end])
if keyword not in keyword_sentence_mapping:
keyword_sentence_mapping[keyword] = context
else:
keyword_sentence_mapping[keyword] += ' ' + context
return keyword_sentence_mapping
# Function to perform entity linking using Wikipedia API
@lru_cache(maxsize=128)
def entity_linking(keyword):
page = wiki_wiki.page(keyword)
if page.exists():
return page.fullurl
return None
async def generate_question_async(context, answer, num_beams):
try:
input_text = f"<context> {context} <answer> {answer}"
print(f"\n{input_text}\n")
input_ids = tokenizer.encode(input_text, return_tensors='pt')
outputs = await asyncio.to_thread(model.generate, input_ids, num_beams=num_beams, early_stopping=True, max_length=250)
question = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(f"\n{question}\n")
return question
except Exception as e:
raise QuestionGenerationError(f"Error in question generation: {str(e)}")
async def generate_options_async(answer, context, n=3):
try:
options = [answer]
# Add contextually relevant words using a pre-trained model
context_embedding = await asyncio.to_thread(context_model.encode, context)
answer_embedding = await asyncio.to_thread(context_model.encode, answer)
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
# Compute similarity scores and sort context words
similarity_scores = [util.pytorch_cos_sim(await asyncio.to_thread(context_model.encode, word), answer_embedding).item() for word in context_words]
sorted_context_words = [word for _, word in sorted(zip(similarity_scores, context_words), reverse=True)]
options.extend(sorted_context_words[:n])
# Try to get similar words based on sense2vec
similar_words = await asyncio.to_thread(get_similar_words_sense2vec, answer, n)
options.extend(similar_words)
# If we don't have enough options, try synonyms
if len(options) < n + 1:
synonyms = await asyncio.to_thread(get_synonyms, answer, n - len(options) + 1)
options.extend(synonyms)
# Ensure we have the correct number of unique options
options = list(dict.fromkeys(options))[:n+1]
# Shuffle the options
random.shuffle(options)
return options
except Exception as e:
raise QuestionGenerationError(f"Error in generating options: {str(e)}")
# Function to generate questions using beam search
async def generate_questions_async(text, num_questions, context_window_size, num_beams, extract_all_keywords):
try:
batches = segment_text(text)
keywords = extract_keywords(text, extract_all_keywords)
all_questions = []
progress_bar = st.progress(0)
status_text = st.empty()
for i, batch in enumerate(batches):
status_text.text(f"Processing batch {i+1} of {len(batches)}...")
batch_questions = await process_batch(batch, keywords, context_window_size, num_beams)
all_questions.extend(batch_questions)
progress_bar.progress((i + 1) / len(batches))
if len(all_questions) >= num_questions:
break
progress_bar.empty()
status_text.empty()
return all_questions[:num_questions]
except QuestionGenerationError as e:
st.error(f"An error occurred during question generation: {str(e)}")
return []
except Exception as e:
st.error(f"An unexpected error occurred: {str(e)}")
return []
async def process_batch(batch, keywords, context_window_size, num_beams):
questions = []
for text in batch:
keyword_sentence_mapping = map_keywords_to_sentences(text, keywords, context_window_size)
for keyword, context in keyword_sentence_mapping.items():
question = await generate_question_async(context, keyword, num_beams)
options = await generate_options_async(keyword, context)
overall_score, relevance_score, complexity_score, spelling_correctness = assess_question_quality(context, question, keyword)
if overall_score >= 0.5:
questions.append({
"question": question,
"context": context,
"answer": keyword,
"options": options,
"overall_score": overall_score,
"relevance_score": relevance_score,
"complexity_score": complexity_score,
"spelling_correctness": spelling_correctness,
})
return questions
# Function to export questions to CSV
def export_to_csv(data):
# df = pd.DataFrame(data, columns=["Context", "Answer", "Question", "Options"])
df = pd.DataFrame(data)
# csv = df.to_csv(index=False,encoding='utf-8')
csv = df.to_csv(index=False)
return csv
# Function to export questions to PDF
def export_to_pdf(data):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
for item in data:
pdf.multi_cell(0, 10, f"Context: {item['context']}")
pdf.multi_cell(0, 10, f"Question: {item['question']}")
pdf.multi_cell(0, 10, f"Answer: {item['answer']}")
pdf.multi_cell(0, 10, f"Options: {', '.join(item['options'])}")
pdf.multi_cell(0, 10, f"Overall Score: {item['overall_score']:.2f}")
pdf.ln(10)
return pdf.output(dest='S').encode('latin-1')
def display_word_cloud(generated_questions):
word_frequency = {}
for question in generated_questions:
words = question.split()
for word in words:
word_frequency[word] = word_frequency.get(word, 0) + 1
wordcloud = WordCloud(width=800, height=400, background_color='white').generate_from_frequencies(word_frequency)
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
st.pyplot()
def assess_question_quality(context, question, answer):
# Assess relevance using cosine similarity
context_doc = nlp(context)
question_doc = nlp(question)
relevance_score = context_doc.similarity(question_doc)
# Assess complexity using token length (as a simple metric)
complexity_score = min(len(question_doc) / 20, 1) # Normalize to 0-1
# Assess Spelling correctness
misspelled = spell.unknown(question.split())
spelling_correctness = 1 - (len(misspelled) / len(question.split())) # Normalize to 0-1
# Calculate overall score (you can adjust weights as needed)
overall_score = (
0.4 * relevance_score +
0.4 * complexity_score +
0.2 * spelling_correctness
)
return overall_score, relevance_score, complexity_score, spelling_correctness
def main():
# Streamlit interface
st.title(":blue[Question Generator System]")
session_id = get_session_id()
state = initialize_state(session_id)
with st.sidebar:
show_info = st.toggle('Show Info',True)
if show_info:
display_info()
st.subheader("Customization Options")
# Customization options
input_type = st.radio("Select Input Preference", ("Text Input","Upload PDF"))
with st.expander("Choose the Additional Elements to show"):
show_context = st.checkbox("Context",True)
show_answer = st.checkbox("Answer",True)
show_options = st.checkbox("Options",False)
show_entity_link = st.checkbox("Entity Link For Wikipedia",True)
show_qa_scores = st.checkbox("QA Score",False)
num_beams = st.slider("Select number of beams for question generation", min_value=2, max_value=10, value=2)
context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
num_questions = st.slider("Select number of questions to generate", min_value=1, max_value=1000, value=5)
col1, col2 = st.columns(2)
with col1:
extract_all_keywords = st.toggle("Extract Max Keywords",value=False)
with col2:
enable_feedback_mode = st.toggle("Enable Feedback Mode",False)
text = None
if input_type == "Text Input":
text = st.text_area("Enter text here:", value="Joe Biden, the current US president is on a weak wicket going in for his reelection later this November against former President Donald Trump.", help="Enter or paste your text here")
elif input_type == "Upload PDF":
file = st.file_uploader("Upload PDF Files")
if file is not None:
try:
text = get_pdf_text(file)
except Exception as e:
st.error(f"Error reading PDF file: {str(e)}")
text = None
if text:
text = clean_text(text)
generate_questions_button = st.button("Generate Questions")
st.markdown('<span aria-label="Generate questions button">Above is the generate questions button</span>', unsafe_allow_html=True)
# if generate_questions_button:
if generate_questions_button and text:
start_time = time.time()
with st.spinner("Generating questions..."):
try:
state['generated_questions'] = asyncio.run(generate_questions_async(text, num_questions, context_window_size, num_beams, extract_all_keywords))
if not state['generated_questions']:
st.warning("No questions were generated. The text might be too short or lack suitable content.")
else:
st.success(f"Successfully generated {len(state['generated_questions'])} questions!")
except QuestionGenerationError as e:
st.error(f"An error occurred during question generation: {str(e)}")
except Exception as e:
st.error(f"An unexpected error occurred: {str(e)}")
print("\n\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n\n")
data = get_state(session_id)
print(data)
end_time = time.time()
print(f"Time Taken to generate: {end_time-start_time}")
set_state(session_id, 'generated_questions', state['generated_questions'])
# sort question based on their quality score
state['generated_questions'] = sorted(state['generated_questions'],key = lambda x: x['overall_score'], reverse=True)
# Display generated questions
if state['generated_questions']:
st.header("Generated Questions:",divider='blue')
for i, q in enumerate(state['generated_questions']):
st.subheader(body=f":orange[Q{i+1}:] {q['question']}")
if show_context is True:
st.write(f"**Context:** {q['context']}")
if show_answer is True:
st.write(f"**Answer:** {q['answer']}")
if show_options is True:
st.write(f"**Options:**")
for j, option in enumerate(q['options']):
st.write(f"{chr(65+j)}. {option}")
if show_entity_link is True:
linked_entity = entity_linking(q['answer'])
if linked_entity:
st.write(f"**Entity Link:** {linked_entity}")
if show_qa_scores is True:
m1,m2,m3,m4 = st.columns([1.7,1,1,1])
m1.metric("Overall Quality Score", value=f"{q['overall_score']:,.2f}")
m2.metric("Relevance Score", value=f"{q['relevance_score']:,.2f}")
m3.metric("Complexity Score", value=f"{q['complexity_score']:,.2f}")
m4.metric("Spelling Correctness", value=f"{q['spelling_correctness']:,.2f}")
# q['context'] = st.text_area(f"Edit Context {i+1}:", value=q['context'], key=f"context_{i}")
if enable_feedback_mode:
q['question'] = st.text_input(f"Edit Question {i+1}:", value=q['question'], key=f"question_{i}")
q['rating'] = st.select_slider(f"Rate this question (1-5)", options=[1, 2, 3, 4, 5], key=f"rating_{i}")
if st.button(f"Submit Feedback for Question {i+1}", key=f"submit_{i}"):
feedback_file=save_feedback(q['question'], q['answer'], q['rating'], q['options'], q['context'])
st.success(f"Feedback submitted for Question {i+1}")
pswd = st.secrets['EMAIL_PASSWORD']
send_email_with_attachment(
email_subject='feedback from QGen',
email_body='Please find the attached feedback JSON file.',
recipient_emails=['apjc01unique@gmail.com', 'channingfisher7@gmail.com'],
sender_email='apjc01unique@gmail.com',
sender_password=pswd,
attachment_path=feedback_file)
st.write("Feedback sent to admin")
st.write("---")
# Export buttons
# if st.session_state.generated_questions:
if state['generated_questions']:
with st.sidebar:
csv_data = export_to_csv(state['generated_questions'])
st.download_button(label="Download CSV", data=csv_data, file_name='questions.csv', mime='text/csv')
pdf_data = export_to_pdf(state['generated_questions'])
st.download_button(label="Download PDF", data=pdf_data, file_name='questions.pdf', mime='application/pdf')
with st.expander("View Visualizations"):
questions = [tpl['question'] for tpl in state['generated_questions']]
overall_scores = [tpl['overall_score'] for tpl in state['generated_questions']]
st.subheader('WordCloud of Questions',divider='rainbow')
display_word_cloud(questions)
st.subheader('Overall Scores',divider='violet')
overall_scores = pd.DataFrame(overall_scores,columns=['Overall Scores'])
st.line_chart(overall_scores)
# View Feedback Statistics
with st.expander("View Feedback Statistics"):
feedback_file = 'question_feedback.json'
if os.path.exists(feedback_file):
with open(feedback_file, 'r') as f:
feedback_data = json.load(f)
st.subheader("Feedback Statistics")
# Calculate average rating
ratings = [feedback['rating'] for feedback in feedback_data]
avg_rating = sum(ratings) / len(ratings) if ratings else 0
st.write(f"Average Question Rating: {avg_rating:.2f}")
# Show distribution of ratings
rating_counts = {i: ratings.count(i) for i in range(1, 6)}
st.bar_chart(rating_counts)
# Show some highly rated questions
st.subheader("Highly Rated Questions")
sorted_feedback = sorted(feedback_data, key=lambda x: x['rating'], reverse=True)
top_questions = sorted_feedback[:5]
for feedback in top_questions:
st.write(f"Question: {feedback['question']}")
st.write(f"Answer: {feedback['answer']}")
st.write(f"Rating: {feedback['rating']}")
st.write("---")
else:
st.write("No feedback data available yet.")
print("********************************************************************************")
if __name__ == '__main__':
try:
main()
except Exception as e:
st.error(f"An unexpected error occurred: {str(e)}")
st.error("Please try refreshing the page. If the problem persists, contact support.") |