foodvision_mini / app.py
Victorano's picture
gradio demo working fine
42f61ce
raw
history blame
1.69 kB
import gradio as gr
import os
import torch
from model import create_effnetb0_model
from timeit import default_timer as timer
from typing import Tuple, Dict
class_names = ["pizza", "steak", "sushi"]
effnetb0, effnetb0_transforms = create_effnetb0_model()
effnetb0.load_state_dict(torch.load(
"07_effnetb0_data_20_percent_10_epochs.pth"))
def predict(img) -> Tuple[Dict, float]:
pred_list = []
pred_dict = {}
start_time = timer()
img = effnetb0_transforms(img).unsqueeze(0)
effnetb0.eval()
with torch.inference_mode():
pred_probs = torch.softmax(effnetb0(img), dim=1)
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
pred_labels_and_probs = {class_names[i]: float(
pred_probs[0][i]) for i in range(len(class_names))}
pred_time = round(timer() - start_time, 4)
pred_list.append(pred_dict)
return pred_labels_and_probs, pred_time
title = "FoodVision Mini πŸ•πŸ₯©πŸ£"
description = "An EfficientNetB0 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
article = "Full Source code from scratch [deployment.ipynb](https://github.com/Victoran0/food-vision.git)."
# Create examples list from "examples/" directory
example_list = [["examples/" + example] for example in os.listdir("examples")]
demo = gr.Interface(fn=predict, inputs=gr.Image(type='pil'), outputs=[gr.Label(num_top_classes=3, label='Predictions'), gr.Number(
label="Prediction time (s)")], examples=example_list, title=title, description=description, article=article)
demo.launch()