Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import torch | |
from model import create_effnetb0_model | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
class_names = ["pizza", "steak", "sushi"] | |
effnetb0, effnetb0_transforms = create_effnetb0_model() | |
effnetb0.load_state_dict(torch.load( | |
"07_effnetb0_data_20_percent_10_epochs.pth")) | |
def predict(img) -> Tuple[Dict, float]: | |
pred_list = [] | |
pred_dict = {} | |
start_time = timer() | |
img = effnetb0_transforms(img).unsqueeze(0) | |
effnetb0.eval() | |
with torch.inference_mode(): | |
pred_probs = torch.softmax(effnetb0(img), dim=1) | |
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) | |
pred_labels_and_probs = {class_names[i]: float( | |
pred_probs[0][i]) for i in range(len(class_names))} | |
pred_time = round(timer() - start_time, 4) | |
pred_list.append(pred_dict) | |
return pred_labels_and_probs, pred_time | |
title = "FoodVision Mini ππ₯©π£" | |
description = "An EfficientNetB0 feature extractor computer vision model to classify images of food as pizza, steak or sushi." | |
article = "Full Source code from scratch [deployment.ipynb](https://github.com/Victoran0/food-vision.git)." | |
# Create examples list from "examples/" directory | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
demo = gr.Interface(fn=predict, inputs=gr.Image(type='pil'), outputs=[gr.Label(num_top_classes=3, label='Predictions'), gr.Number( | |
label="Prediction time (s)")], examples=example_list, title=title, description=description, article=article) | |
demo.launch() | |