Spaces:
Build error
Build error
File size: 44,269 Bytes
3ff0cf3 710169e 3ff0cf3 710169e 3ff0cf3 ed5caf0 3ff0cf3 710169e 3ff0cf3 710169e 3ff0cf3 710169e 3ff0cf3 ed5caf0 710169e 3ff0cf3 ed5caf0 3ff0cf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 |
import os
import sys
# Environment variables
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ['GRADIO_ANALYTICS_ENABLED'] = '0'
# No need to adjust sys.path if using proper module imports
import subprocess
import gradio as gr
from PIL import Image
import torch
import uuid
import shutil
import json
import yaml
from slugify import slugify
from transformers import AutoProcessor, AutoModelForCausalLM
from gradio_logsview import LogsView, LogsViewRunner
from huggingface_hub import hf_hub_download, HfApi
from fluxgym_main.library import flux_train_utils, huggingface_util
from argparse import Namespace
from fluxgym_main import train_network
import toml
import re
MAX_IMAGES = 150
with open('models.yaml', 'r') as file:
models = yaml.safe_load(file)
def readme(base_model, lora_name, instance_prompt, sample_prompts):
# model license
model_config = models[base_model]
model_file = model_config["file"]
base_model_name = model_config["base"]
license = None
license_name = None
license_link = None
license_items = []
if "license" in model_config:
license = model_config["license"]
license_items.append(f"license: {license}")
if "license_name" in model_config:
license_name = model_config["license_name"]
license_items.append(f"license_name: {license_name}")
if "license_link" in model_config:
license_link = model_config["license_link"]
license_items.append(f"license_link: {license_link}")
license_str = "\n".join(license_items)
print(f"license_items={license_items}")
print(f"license_str = {license_str}")
# tags
tags = [ "text-to-image", "flux", "lora", "diffusers", "template:sd-lora", "fluxgym" ]
# widgets
widgets = []
sample_image_paths = []
output_name = slugify(lora_name)
samples_dir = resolve_path_without_quotes(f"outputs/{output_name}/sample")
try:
for filename in os.listdir(samples_dir):
# Filename Schema: [name]_[steps]_[index]_[timestamp].png
match = re.search(r"_(\d+)_(\d+)_(\d+)\.png$", filename)
if match:
steps, index, timestamp = int(match.group(1)), int(match.group(2)), int(match.group(3))
sample_image_paths.append((steps, index, f"sample/{filename}"))
# Sort by numeric index
sample_image_paths.sort(key=lambda x: x[0], reverse=True)
final_sample_image_paths = sample_image_paths[:len(sample_prompts)]
final_sample_image_paths.sort(key=lambda x: x[1])
for i, prompt in enumerate(sample_prompts):
_, _, image_path = final_sample_image_paths[i]
widgets.append(
{
"text": prompt,
"output": {
"url": image_path
},
}
)
except:
print(f"no samples")
dtype = "torch.bfloat16"
# Construct the README content
readme_content = f"""---
tags:
{yaml.dump(tags, indent=4).strip()}
{"widget:" if os.path.isdir(samples_dir) else ""}
{yaml.dump(widgets, indent=4).strip() if widgets else ""}
base_model: {base_model_name}
{"instance_prompt: " + instance_prompt if instance_prompt else ""}
{license_str}
---
# {lora_name}
A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym)
<Gallery />
## Trigger words
{"You should use `" + instance_prompt + "` to trigger the image generation." if instance_prompt else "No trigger words defined."}
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc.
Weights for this model are available in Safetensors format.
"""
return readme_content
def account_hf():
try:
with open("HF_TOKEN", "r") as file:
token = file.read()
api = HfApi(token=token)
try:
account = api.whoami()
return { "token": token, "account": account['name'] }
except:
return None
except:
return None
"""
hf_logout.click(fn=logout_hf, outputs=[hf_token, hf_login, hf_logout, repo_owner])
"""
def logout_hf():
os.remove("HF_TOKEN")
global current_account
current_account = account_hf()
print(f"current_account={current_account}")
return gr.update(value=""), gr.update(visible=True), gr.update(visible=False), gr.update(value="", visible=False)
"""
hf_login.click(fn=login_hf, inputs=[hf_token], outputs=[hf_token, hf_login, hf_logout, repo_owner])
"""
def login_hf(hf_token):
api = HfApi(token=hf_token)
try:
account = api.whoami()
if account != None:
if "name" in account:
with open("HF_TOKEN", "w") as file:
file.write(hf_token)
global current_account
current_account = account_hf()
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(value=current_account["account"], visible=True)
return gr.update(), gr.update(), gr.update(), gr.update()
except:
print(f"incorrect hf_token")
return gr.update(), gr.update(), gr.update(), gr.update()
def upload_hf(base_model, lora_rows, repo_owner, repo_name, repo_visibility, hf_token):
src = lora_rows
repo_id = f"{repo_owner}/{repo_name}"
gr.Info(f"Uploading to Huggingface. Please Stand by...", duration=None)
args = Namespace(
huggingface_repo_id=repo_id,
huggingface_repo_type="model",
huggingface_repo_visibility=repo_visibility,
huggingface_path_in_repo="",
huggingface_token=hf_token,
async_upload=False
)
print(f"upload_hf args={args}")
huggingface_util.upload(args=args, src=src)
gr.Info(f"[Upload Complete] https://huggingface.co/{repo_id}", duration=None)
def load_captioning(uploaded_files, concept_sentence):
uploaded_images = [file for file in uploaded_files if not file.endswith('.txt')]
txt_files = [file for file in uploaded_files if file.endswith('.txt')]
txt_files_dict = {os.path.splitext(os.path.basename(txt_file))[0]: txt_file for txt_file in txt_files}
updates = []
if len(uploaded_images) <= 1:
raise gr.Error(
"Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)"
)
elif len(uploaded_images) > MAX_IMAGES:
raise gr.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training")
# Update for the captioning_area
# for _ in range(3):
updates.append(gr.update(visible=True))
# Update visibility and image for each captioning row and image
for i in range(1, MAX_IMAGES + 1):
# Determine if the current row and image should be visible
visible = i <= len(uploaded_images)
# Update visibility of the captioning row
updates.append(gr.update(visible=visible))
# Update for image component - display image if available, otherwise hide
image_value = uploaded_images[i - 1] if visible else None
updates.append(gr.update(value=image_value, visible=visible))
corresponding_caption = False
if(image_value):
base_name = os.path.splitext(os.path.basename(image_value))[0]
if base_name in txt_files_dict:
with open(txt_files_dict[base_name], 'r') as file:
corresponding_caption = file.read()
# Update value of captioning area
text_value = corresponding_caption if visible and corresponding_caption else concept_sentence if visible and concept_sentence else None
updates.append(gr.update(value=text_value, visible=visible))
# Update for the sample caption area
updates.append(gr.update(visible=True))
updates.append(gr.update(visible=True))
return updates
def hide_captioning():
return gr.update(visible=False), gr.update(visible=False)
def resize_image(image_path, output_path, size):
with Image.open(image_path) as img:
width, height = img.size
if width < height:
new_width = size
new_height = int((size/width) * height)
else:
new_height = size
new_width = int((size/height) * width)
print(f"resize {image_path} : {new_width}x{new_height}")
img_resized = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
img_resized.save(output_path)
def create_dataset(destination_folder, size, *inputs):
print("Creating dataset")
images = inputs[0]
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
for index, image in enumerate(images):
# copy the images to the datasets folder
new_image_path = shutil.copy(image, destination_folder)
# if it's a caption text file skip the next bit
ext = os.path.splitext(new_image_path)[-1].lower()
if ext == '.txt':
continue
# resize the images
resize_image(new_image_path, new_image_path, size)
# copy the captions
original_caption = inputs[index + 1]
image_file_name = os.path.basename(new_image_path)
caption_file_name = os.path.splitext(image_file_name)[0] + ".txt"
caption_path = resolve_path_without_quotes(os.path.join(destination_folder, caption_file_name))
print(f"image_path={new_image_path}, caption_path = {caption_path}, original_caption={original_caption}")
# if caption_path exists, do not write
if os.path.exists(caption_path):
print(f"{caption_path} already exists. use the existing .txt file")
else:
print(f"{caption_path} create a .txt caption file")
with open(caption_path, 'w') as file:
file.write(original_caption)
print(f"destination_folder {destination_folder}")
return destination_folder
def run_captioning(images, concept_sentence, *captions):
print(f"run_captioning")
print(f"concept sentence {concept_sentence}")
print(f"captions {captions}")
#Load internally to not consume resources for training
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"device={device}")
torch_dtype = torch.float16
model = AutoModelForCausalLM.from_pretrained(
"multimodalart/Florence-2-large-no-flash-attn", torch_dtype=torch_dtype, trust_remote_code=True
).to(device)
processor = AutoProcessor.from_pretrained("multimodalart/Florence-2-large-no-flash-attn", trust_remote_code=True)
captions = list(captions)
for i, image_path in enumerate(images):
print(captions[i])
if isinstance(image_path, str): # If image is a file path
image = Image.open(image_path).convert("RGB")
prompt = "<DETAILED_CAPTION>"
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
print(f"inputs {inputs}")
generated_ids = model.generate(
input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
)
print(f"generated_ids {generated_ids}")
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
print(f"generated_text: {generated_text}")
parsed_answer = processor.post_process_generation(
generated_text, task=prompt, image_size=(image.width, image.height)
)
print(f"parsed_answer = {parsed_answer}")
caption_text = parsed_answer["<DETAILED_CAPTION>"].replace("The image shows ", "")
print(f"caption_text = {caption_text}, concept_sentence={concept_sentence}")
if concept_sentence:
caption_text = f"{concept_sentence} {caption_text}"
captions[i] = caption_text
yield captions
model.to("cpu")
del model
del processor
if torch.cuda.is_available():
torch.cuda.empty_cache()
def recursive_update(d, u):
for k, v in u.items():
if isinstance(v, dict) and v:
d[k] = recursive_update(d.get(k, {}), v)
else:
d[k] = v
return d
def download(base_model):
model = models[base_model]
model_file = model["file"]
repo = model["repo"]
# download unet
if base_model == "flux-dev" or base_model == "flux-schnell":
unet_folder = "models/unet"
else:
unet_folder = f"models/unet/{repo}"
unet_path = os.path.join(unet_folder, model_file)
if not os.path.exists(unet_path):
os.makedirs(unet_folder, exist_ok=True)
gr.Info(f"Downloading base model: {base_model}. Please wait. (You can check the terminal for the download progress)", duration=None)
print(f"download {base_model}")
hf_hub_download(repo_id=repo, local_dir=unet_folder, filename=model_file)
# download vae
vae_folder = "models/vae"
vae_path = os.path.join(vae_folder, "ae.sft")
if not os.path.exists(vae_path):
os.makedirs(vae_folder, exist_ok=True)
gr.Info(f"Downloading vae")
print(f"downloading ae.sft...")
hf_hub_download(repo_id="cocktailpeanut/xulf-dev", local_dir=vae_folder, filename="ae.sft")
# download clip
clip_folder = "models/clip"
clip_l_path = os.path.join(clip_folder, "clip_l.safetensors")
if not os.path.exists(clip_l_path):
os.makedirs(clip_folder, exist_ok=True)
gr.Info(f"Downloading clip...")
print(f"download clip_l.safetensors")
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", local_dir=clip_folder, filename="clip_l.safetensors")
# download t5xxl
t5xxl_path = os.path.join(clip_folder, "t5xxl_fp16.safetensors")
if not os.path.exists(t5xxl_path):
print(f"download t5xxl_fp16.safetensors")
gr.Info(f"Downloading t5xxl...")
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", local_dir=clip_folder, filename="t5xxl_fp16.safetensors")
def resolve_path(p):
current_dir = os.path.dirname(os.path.abspath(__file__))
norm_path = os.path.normpath(os.path.join(current_dir, p))
return f"\"{norm_path}\""
def resolve_path_without_quotes(p):
current_dir = os.path.dirname(os.path.abspath(__file__))
norm_path = os.path.normpath(os.path.join(current_dir, p))
return norm_path
def gen_sh(
base_model,
output_name,
resolution,
seed,
workers,
learning_rate,
network_dim,
max_train_epochs,
save_every_n_epochs,
timestep_sampling,
guidance_scale,
vram,
sample_prompts,
sample_every_n_steps,
*advanced_components
):
print(f"gen_sh: network_dim:{network_dim}, max_train_epochs={max_train_epochs}, save_every_n_epochs={save_every_n_epochs}, timestep_sampling={timestep_sampling}, guidance_scale={guidance_scale}, vram={vram}, sample_prompts={sample_prompts}, sample_every_n_steps={sample_every_n_steps}")
output_dir = resolve_path(f"outputs/{output_name}")
sample_prompts_path = resolve_path(f"outputs/{output_name}/sample_prompts.txt")
line_break = "\\"
file_type = "sh"
if sys.platform == "win32":
line_break = "^"
file_type = "bat"
############# Sample args ########################
sample = ""
if len(sample_prompts) > 0 and sample_every_n_steps > 0:
sample = f"""--sample_prompts={sample_prompts_path} --sample_every_n_steps="{sample_every_n_steps}" {line_break}"""
############# Optimizer args ########################
# if vram == "8G":
# optimizer = f"""--optimizer_type adafactor {line_break}
# --optimizer_args "relative_step=False" "scale_parameter=False" "warmup_init=False" {line_break}
# --split_mode {line_break}
# --network_args "train_blocks=single" {line_break}
# --lr_scheduler constant_with_warmup {line_break}
# --max_grad_norm 0.0 {line_break}"""
if vram == "16G":
# 16G VRAM
optimizer = f"""--optimizer_type adafactor {line_break}
--optimizer_args "relative_step=False" "scale_parameter=False" "warmup_init=False" {line_break}
--lr_scheduler constant_with_warmup {line_break}
--max_grad_norm 0.0 {line_break}"""
elif vram == "12G":
# 12G VRAM
optimizer = f"""--optimizer_type adafactor {line_break}
--optimizer_args "relative_step=False" "scale_parameter=False" "warmup_init=False" {line_break}
--split_mode {line_break}
--network_args "train_blocks=single" {line_break}
--lr_scheduler constant_with_warmup {line_break}
--max_grad_norm 0.0 {line_break}"""
else:
# 20G+ VRAM
optimizer = f"--optimizer_type adamw8bit {line_break}"
#######################################################
model_config = models[base_model]
model_file = model_config["file"]
repo = model_config["repo"]
if base_model == "flux-dev" or base_model == "flux-schnell":
model_folder = "models/unet"
else:
model_folder = f"models/unet/{repo}"
model_path = os.path.join(model_folder, model_file)
pretrained_model_path = resolve_path(model_path)
clip_path = resolve_path("models/clip/clip_l.safetensors")
t5_path = resolve_path("models/clip/t5xxl_fp16.safetensors")
ae_path = resolve_path("models/vae/ae.sft")
sh = f"""accelerate launch {line_break}
--mixed_precision bf16 {line_break}
--num_cpu_threads_per_process 1 {line_break}
sd-scripts/flux_train_network.py {line_break}
--pretrained_model_name_or_path {pretrained_model_path} {line_break}
--clip_l {clip_path} {line_break}
--t5xxl {t5_path} {line_break}
--ae {ae_path} {line_break}
--cache_latents_to_disk {line_break}
--save_model_as safetensors {line_break}
--sdpa --persistent_data_loader_workers {line_break}
--max_data_loader_n_workers {workers} {line_break}
--seed {seed} {line_break}
--gradient_checkpointing {line_break}
--mixed_precision bf16 {line_break}
--save_precision bf16 {line_break}
--network_module networks.lora_flux {line_break}
--network_dim {network_dim} {line_break}
{optimizer}{sample}
--learning_rate {learning_rate} {line_break}
--cache_text_encoder_outputs {line_break}
--cache_text_encoder_outputs_to_disk {line_break}
--fp8_base {line_break}
--highvram {line_break}
--max_train_epochs {max_train_epochs} {line_break}
--save_every_n_epochs {save_every_n_epochs} {line_break}
--dataset_config {resolve_path(f"outputs/{output_name}/dataset.toml")} {line_break}
--output_dir {output_dir} {line_break}
--output_name {output_name} {line_break}
--timestep_sampling {timestep_sampling} {line_break}
--discrete_flow_shift 3.1582 {line_break}
--model_prediction_type raw {line_break}
--guidance_scale {guidance_scale} {line_break}
--loss_type l2 {line_break}"""
############# Advanced args ########################
global advanced_component_ids
global original_advanced_component_values
# check dirty
print(f"original_advanced_component_values = {original_advanced_component_values}")
advanced_flags = []
for i, current_value in enumerate(advanced_components):
# print(f"compare {advanced_component_ids[i]}: old={original_advanced_component_values[i]}, new={current_value}")
if original_advanced_component_values[i] != current_value:
# dirty
if current_value == True:
# Boolean
advanced_flags.append(advanced_component_ids[i])
else:
# string
advanced_flags.append(f"{advanced_component_ids[i]} {current_value}")
if len(advanced_flags) > 0:
advanced_flags_str = f" {line_break}\n ".join(advanced_flags)
sh = sh + "\n " + advanced_flags_str
return sh
def gen_toml(
dataset_folder,
resolution,
class_tokens,
num_repeats
):
toml = f"""[general]
shuffle_caption = false
caption_extension = '.txt'
keep_tokens = 1
[[datasets]]
resolution = {resolution}
batch_size = 1
keep_tokens = 1
[[datasets.subsets]]
image_dir = '{resolve_path_without_quotes(dataset_folder)}'
class_tokens = '{class_tokens}'
num_repeats = {num_repeats}"""
return toml
def update_total_steps(max_train_epochs, num_repeats, images):
try:
num_images = len(images)
total_steps = max_train_epochs * num_images * num_repeats
print(f"max_train_epochs={max_train_epochs} num_images={num_images}, num_repeats={num_repeats}, total_steps={total_steps}")
return gr.update(value = total_steps)
except:
print("")
def set_repo(lora_rows):
selected_name = os.path.basename(lora_rows)
return gr.update(value=selected_name)
def get_loras():
try:
outputs_path = resolve_path_without_quotes(f"outputs")
files = os.listdir(outputs_path)
folders = [os.path.join(outputs_path, item) for item in files if os.path.isdir(os.path.join(outputs_path, item)) and item != "sample"]
folders.sort(key=lambda file: os.path.getctime(file), reverse=True)
return folders
except Exception as e:
return []
def get_samples(lora_name):
output_name = slugify(lora_name)
try:
samples_path = resolve_path_without_quotes(f"outputs/{output_name}/sample")
files = [os.path.join(samples_path, file) for file in os.listdir(samples_path)]
files.sort(key=lambda file: os.path.getctime(file), reverse=True)
return files
except:
return []
def start_training(
base_model,
lora_name,
train_script,
train_config,
sample_prompts,
):
# write custom script and toml
if not os.path.exists("models"):
os.makedirs("models", exist_ok=True)
if not os.path.exists("outputs"):
os.makedirs("outputs", exist_ok=True)
output_name = slugify(lora_name)
output_dir = resolve_path_without_quotes(f"outputs/{output_name}")
if not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)
download(base_model)
file_type = "sh"
if sys.platform == "win32":
file_type = "bat"
sh_filename = f"train.{file_type}"
sh_filepath = resolve_path_without_quotes(f"outputs/{output_name}/{sh_filename}")
with open(sh_filepath, 'w', encoding="utf-8") as file:
file.write(train_script)
gr.Info(f"Generated train script at {sh_filename}")
dataset_path = resolve_path_without_quotes(f"outputs/{output_name}/dataset.toml")
with open(dataset_path, 'w', encoding="utf-8") as file:
file.write(train_config)
gr.Info(f"Generated dataset.toml")
sample_prompts_path = resolve_path_without_quotes(f"outputs/{output_name}/sample_prompts.txt")
with open(sample_prompts_path, 'w', encoding='utf-8') as file:
file.write(sample_prompts)
gr.Info(f"Generated sample_prompts.txt")
# Train
if sys.platform == "win32":
command = sh_filepath
else:
command = f"bash \"{sh_filepath}\""
# Use Popen to run the command and capture output in real-time
env = os.environ.copy()
env['PYTHONIOENCODING'] = 'utf-8'
env['LOG_LEVEL'] = 'DEBUG'
runner = LogsViewRunner()
cwd = os.path.dirname(os.path.abspath(__file__))
gr.Info(f"Started training")
yield from runner.run_command([command], cwd=cwd)
yield runner.log(f"Runner: {runner}")
# Generate Readme
config = toml.loads(train_config)
concept_sentence = config['datasets'][0]['subsets'][0]['class_tokens']
print(f"concept_sentence={concept_sentence}")
print(f"lora_name {lora_name}, concept_sentence={concept_sentence}, output_name={output_name}")
sample_prompts_path = resolve_path_without_quotes(f"outputs/{output_name}/sample_prompts.txt")
with open(sample_prompts_path, "r", encoding="utf-8") as f:
lines = f.readlines()
sample_prompts = [line.strip() for line in lines if len(line.strip()) > 0 and line[0] != "#"]
md = readme(base_model, lora_name, concept_sentence, sample_prompts)
readme_path = resolve_path_without_quotes(f"outputs/{output_name}/README.md")
with open(readme_path, "w", encoding="utf-8") as f:
f.write(md)
gr.Info(f"Training Complete. Check the outputs folder for the LoRA files.", duration=None)
def update(
base_model,
lora_name,
resolution,
seed,
workers,
class_tokens,
learning_rate,
network_dim,
max_train_epochs,
save_every_n_epochs,
timestep_sampling,
guidance_scale,
vram,
num_repeats,
sample_prompts,
sample_every_n_steps,
*advanced_components,
):
output_name = slugify(lora_name)
dataset_folder = str(f"datasets/{output_name}")
sh = gen_sh(
base_model,
output_name,
resolution,
seed,
workers,
learning_rate,
network_dim,
max_train_epochs,
save_every_n_epochs,
timestep_sampling,
guidance_scale,
vram,
sample_prompts,
sample_every_n_steps,
*advanced_components,
)
toml = gen_toml(
dataset_folder,
resolution,
class_tokens,
num_repeats
)
return gr.update(value=sh), gr.update(value=toml), dataset_folder
"""
demo.load(fn=loaded, js=js, outputs=[hf_token, hf_login, hf_logout, hf_account])
"""
def loaded():
global current_account
current_account = account_hf()
print(f"current_account={current_account}")
if current_account != None:
return gr.update(value=current_account["token"]), gr.update(visible=False), gr.update(visible=True), gr.update(value=current_account["account"], visible=True)
else:
return gr.update(value=""), gr.update(visible=True), gr.update(visible=False), gr.update(value="", visible=False)
def update_sample(concept_sentence):
return gr.update(value=concept_sentence)
def refresh_publish_tab():
loras = get_loras()
return gr.Dropdown(label="Trained LoRAs", choices=loras)
def init_advanced():
# if basic_args
basic_args = {
'pretrained_model_name_or_path',
'clip_l',
't5xxl',
'ae',
'cache_latents_to_disk',
'save_model_as',
'sdpa',
'persistent_data_loader_workers',
'max_data_loader_n_workers',
'seed',
'gradient_checkpointing',
'mixed_precision',
'save_precision',
'network_module',
'network_dim',
'learning_rate',
'cache_text_encoder_outputs',
'cache_text_encoder_outputs_to_disk',
'fp8_base',
'highvram',
'max_train_epochs',
'save_every_n_epochs',
'dataset_config',
'output_dir',
'output_name',
'timestep_sampling',
'discrete_flow_shift',
'model_prediction_type',
'guidance_scale',
'loss_type',
'optimizer_type',
'optimizer_args',
'lr_scheduler',
'sample_prompts',
'sample_every_n_steps',
'max_grad_norm',
'split_mode',
'network_args'
}
# generate a UI config
# if not in basic_args, create a simple form
parser = train_network.setup_parser()
flux_train_utils.add_flux_train_arguments(parser)
args_info = {}
for action in parser._actions:
if action.dest != 'help': # Skip the default help argument
# if the dest is included in basic_args
args_info[action.dest] = {
"action": action.option_strings, # Option strings like '--use_8bit_adam'
"type": action.type, # Type of the argument
"help": action.help, # Help message
"default": action.default, # Default value, if any
"required": action.required # Whether the argument is required
}
temp = []
for key in args_info:
temp.append({ 'key': key, 'action': args_info[key] })
temp.sort(key=lambda x: x['key'])
advanced_component_ids = []
advanced_components = []
for item in temp:
key = item['key']
action = item['action']
if key in basic_args:
print("")
else:
action_type = str(action['type'])
component = None
with gr.Column(min_width=300):
if action_type == "None":
# radio
component = gr.Checkbox()
# elif action_type == "<class 'str'>":
# component = gr.Textbox()
# elif action_type == "<class 'int'>":
# component = gr.Number(precision=0)
# elif action_type == "<class 'float'>":
# component = gr.Number()
# elif "int_or_float" in action_type:
# component = gr.Number()
else:
component = gr.Textbox(value="")
if component != None:
component.interactive = True
component.elem_id = action['action'][0]
component.label = component.elem_id
component.elem_classes = ["advanced"]
if action['help'] != None:
component.info = action['help']
advanced_components.append(component)
advanced_component_ids.append(component.elem_id)
return advanced_components, advanced_component_ids
theme = gr.themes.Monochrome(
text_size=gr.themes.Size(lg="18px", md="15px", sm="13px", xl="22px", xs="12px", xxl="24px", xxs="9px"),
font=[gr.themes.GoogleFont("Source Sans Pro"), "ui-sans-serif", "system-ui", "sans-serif"],
)
css = """
@keyframes rotate {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
#advanced_options .advanced:nth-child(even) { background: rgba(0,0,100,0.04) !important; }
h1{font-family: georgia; font-style: italic; font-weight: bold; font-size: 30px; letter-spacing: -1px;}
h3{margin-top: 0}
.tabitem{border: 0px}
.group_padding{}
nav{position: fixed; top: 0; left: 0; right: 0; z-index: 1000; text-align: center; padding: 10px; box-sizing: border-box; display: flex; align-items: center; backdrop-filter: blur(10px); }
nav button { background: none; color: firebrick; font-weight: bold; border: 2px solid firebrick; padding: 5px 10px; border-radius: 5px; font-size: 14px; }
nav img { height: 40px; width: 40px; border-radius: 40px; }
nav img.rotate { animation: rotate 2s linear infinite; }
.flexible { flex-grow: 1; }
.tast-details { margin: 10px 0 !important; }
.toast-wrap { bottom: var(--size-4) !important; top: auto !important; border: none !important; backdrop-filter: blur(10px); }
.toast-title, .toast-text, .toast-icon, .toast-close { color: black !important; font-size: 14px; }
.toast-body { border: none !important; }
#terminal { box-shadow: none !important; margin-bottom: 25px; background: rgba(0,0,0,0.03); }
#terminal .generating { border: none !important; }
#terminal label { position: absolute !important; }
.tabs { margin-top: 50px; }
.hidden { display: none !important; }
.codemirror-wrapper .cm-line { font-size: 12px !important; }
label { font-weight: bold !important; }
#start_training.clicked { background: silver; color: black; }
"""
js = """
function() {
let autoscroll = document.querySelector("#autoscroll")
if (window.iidxx) {
window.clearInterval(window.iidxx);
}
window.iidxx = window.setInterval(function() {
let text=document.querySelector(".codemirror-wrapper .cm-line").innerText.trim()
let img = document.querySelector("#logo")
if (text.length > 0) {
autoscroll.classList.remove("hidden")
if (autoscroll.classList.contains("on")) {
autoscroll.textContent = "Autoscroll ON"
window.scrollTo(0, document.body.scrollHeight, { behavior: "smooth" });
img.classList.add("rotate")
} else {
autoscroll.textContent = "Autoscroll OFF"
img.classList.remove("rotate")
}
}
}, 500);
console.log("autoscroll", autoscroll)
autoscroll.addEventListener("click", (e) => {
autoscroll.classList.toggle("on")
})
function debounce(fn, delay) {
let timeoutId;
return function(...args) {
clearTimeout(timeoutId);
timeoutId = setTimeout(() => fn(...args), delay);
};
}
function handleClick() {
console.log("refresh")
document.querySelector("#refresh").click();
}
const debouncedClick = debounce(handleClick, 1000);
document.addEventListener("input", debouncedClick);
document.querySelector("#start_training").addEventListener("click", (e) => {
e.target.classList.add("clicked")
e.target.innerHTML = "Training..."
})
}
"""
current_account = account_hf()
print(f"current_account={current_account}")
with gr.Blocks(elem_id="app", theme=theme, css=css, fill_width=True) as demo:
with gr.Tabs() as tabs:
with gr.TabItem("Gym"):
output_components = []
with gr.Row():
gr.HTML("""<nav>
<img id='logo' src='/file=icon.png' width='80' height='80'>
<div class='flexible'></div>
<button id='autoscroll' class='on hidden'></button>
</nav>
""")
with gr.Row(elem_id='container'):
with gr.Column():
gr.Markdown(
"""# Step 1. LoRA Info
<p style="margin-top:0">Configure your LoRA train settings.</p>
""", elem_classes="group_padding")
lora_name = gr.Textbox(
label="The name of your LoRA",
info="This has to be a unique name",
placeholder="e.g.: Persian Miniature Painting style, Cat Toy",
)
concept_sentence = gr.Textbox(
elem_id="--concept_sentence",
label="Trigger word/sentence",
info="Trigger word or sentence to be used",
placeholder="uncommon word like p3rs0n or trtcrd, or sentence like 'in the style of CNSTLL'",
interactive=True,
)
model_names = list(models.keys())
print(f"model_names={model_names}")
base_model = gr.Dropdown(label="Base model (edit the models.yaml file to add more to this list)", choices=model_names, value=model_names[0])
vram = gr.Radio(["20G", "16G", "12G" ], value="20G", label="VRAM", interactive=True)
num_repeats = gr.Number(value=10, precision=0, label="Repeat trains per image", interactive=True)
max_train_epochs = gr.Number(label="Max Train Epochs", value=16, interactive=True)
total_steps = gr.Number(0, interactive=False, label="Expected training steps")
sample_prompts = gr.Textbox("", lines=5, label="Sample Image Prompts (Separate with new lines)", interactive=True)
sample_every_n_steps = gr.Number(0, precision=0, label="Sample Image Every N Steps", interactive=True)
resolution = gr.Number(value=512, precision=0, label="Resize dataset images")
with gr.Column():
gr.Markdown(
"""# Step 2. Dataset
<p style="margin-top:0">Make sure the captions include the trigger word.</p>
""", elem_classes="group_padding")
with gr.Group():
images = gr.File(
file_types=["image", ".txt"],
label="Upload your images",
#info="If you want, you can also manually upload caption files that match the image names (example: img0.png => img0.txt)",
file_count="multiple",
interactive=True,
visible=True,
scale=1,
)
with gr.Group(visible=False) as captioning_area:
do_captioning = gr.Button("Add AI captions with Florence-2")
output_components.append(captioning_area)
#output_components = [captioning_area]
caption_list = []
for i in range(1, MAX_IMAGES + 1):
locals()[f"captioning_row_{i}"] = gr.Row(visible=False)
with locals()[f"captioning_row_{i}"]:
locals()[f"image_{i}"] = gr.Image(
type="filepath",
width=111,
height=111,
min_width=111,
interactive=False,
scale=2,
show_label=False,
show_share_button=False,
show_download_button=False,
)
locals()[f"caption_{i}"] = gr.Textbox(
label=f"Caption {i}", scale=15, interactive=True
)
output_components.append(locals()[f"captioning_row_{i}"])
output_components.append(locals()[f"image_{i}"])
output_components.append(locals()[f"caption_{i}"])
caption_list.append(locals()[f"caption_{i}"])
with gr.Column():
gr.Markdown(
"""# Step 3. Train
<p style="margin-top:0">Press start to start training.</p>
""", elem_classes="group_padding")
refresh = gr.Button("Refresh", elem_id="refresh", visible=False)
start = gr.Button("Start training", visible=False, elem_id="start_training")
output_components.append(start)
train_script = gr.Textbox(label="Train script", max_lines=100, interactive=True)
train_config = gr.Textbox(label="Train config", max_lines=100, interactive=True)
with gr.Accordion("Advanced options", elem_id='advanced_options', open=False):
with gr.Row():
with gr.Column(min_width=300):
seed = gr.Number(label="--seed", info="Seed", value=42, interactive=True)
with gr.Column(min_width=300):
workers = gr.Number(label="--max_data_loader_n_workers", info="Number of Workers", value=2, interactive=True)
with gr.Column(min_width=300):
learning_rate = gr.Textbox(label="--learning_rate", info="Learning Rate", value="8e-4", interactive=True)
with gr.Column(min_width=300):
save_every_n_epochs = gr.Number(label="--save_every_n_epochs", info="Save every N epochs", value=4, interactive=True)
with gr.Column(min_width=300):
guidance_scale = gr.Number(label="--guidance_scale", info="Guidance Scale", value=1.0, interactive=True)
with gr.Column(min_width=300):
timestep_sampling = gr.Textbox(label="--timestep_sampling", info="Timestep Sampling", value="shift", interactive=True)
with gr.Column(min_width=300):
network_dim = gr.Number(label="--network_dim", info="LoRA Rank", value=4, minimum=4, maximum=128, step=4, interactive=True)
advanced_components, advanced_component_ids = init_advanced()
with gr.Row():
terminal = LogsView(label="Train log", elem_id="terminal")
with gr.Row():
gallery = gr.Gallery(get_samples, inputs=[lora_name], label="Samples", every=10, columns=6)
with gr.TabItem("Publish") as publish_tab:
hf_token = gr.Textbox(label="Huggingface Token")
hf_login = gr.Button("Login")
hf_logout = gr.Button("Logout")
with gr.Row() as row:
gr.Markdown("**LoRA**")
gr.Markdown("**Upload**")
loras = get_loras()
with gr.Row():
lora_rows = refresh_publish_tab()
with gr.Column():
with gr.Row():
repo_owner = gr.Textbox(label="Account", interactive=False)
repo_name = gr.Textbox(label="Repository Name")
repo_visibility = gr.Textbox(label="Repository Visibility ('public' or 'private')", value="public")
upload_button = gr.Button("Upload to HuggingFace")
upload_button.click(
fn=upload_hf,
inputs=[
base_model,
lora_rows,
repo_owner,
repo_name,
repo_visibility,
hf_token,
]
)
hf_login.click(fn=login_hf, inputs=[hf_token], outputs=[hf_token, hf_login, hf_logout, repo_owner])
hf_logout.click(fn=logout_hf, outputs=[hf_token, hf_login, hf_logout, repo_owner])
publish_tab.select(refresh_publish_tab, outputs=lora_rows)
lora_rows.select(fn=set_repo, inputs=[lora_rows], outputs=[repo_name])
dataset_folder = gr.State()
listeners = [
base_model,
lora_name,
resolution,
seed,
workers,
concept_sentence,
learning_rate,
network_dim,
max_train_epochs,
save_every_n_epochs,
timestep_sampling,
guidance_scale,
vram,
num_repeats,
sample_prompts,
sample_every_n_steps,
*advanced_components
]
advanced_component_ids = [x.elem_id for x in advanced_components]
original_advanced_component_values = [comp.value for comp in advanced_components]
images.upload(
load_captioning,
inputs=[images, concept_sentence],
outputs=output_components
)
images.delete(
load_captioning,
inputs=[images, concept_sentence],
outputs=output_components
)
images.clear(
hide_captioning,
outputs=[captioning_area, start]
)
max_train_epochs.change(
fn=update_total_steps,
inputs=[max_train_epochs, num_repeats, images],
outputs=[total_steps]
)
num_repeats.change(
fn=update_total_steps,
inputs=[max_train_epochs, num_repeats, images],
outputs=[total_steps]
)
images.upload(
fn=update_total_steps,
inputs=[max_train_epochs, num_repeats, images],
outputs=[total_steps]
)
images.delete(
fn=update_total_steps,
inputs=[max_train_epochs, num_repeats, images],
outputs=[total_steps]
)
images.clear(
fn=update_total_steps,
inputs=[max_train_epochs, num_repeats, images],
outputs=[total_steps]
)
concept_sentence.change(fn=update_sample, inputs=[concept_sentence], outputs=sample_prompts)
start.click(fn=create_dataset, inputs=[dataset_folder, resolution, images] + caption_list, outputs=dataset_folder).then(
fn=start_training,
inputs=[
base_model,
lora_name,
train_script,
train_config,
sample_prompts,
],
outputs=terminal,
)
do_captioning.click(fn=run_captioning, inputs=[images, concept_sentence] + caption_list, outputs=caption_list)
demo.load(fn=loaded, js=js, outputs=[hf_token, hf_login, hf_logout, repo_owner])
refresh.click(update, inputs=listeners, outputs=[train_script, train_config, dataset_folder])
if __name__ == "__main__":
cwd = os.path.dirname(os.path.abspath(__file__))
demo.launch(debug=True, show_error=True, allowed_paths=[cwd])
|