Update app.py
#1
by
diabolic6045
- opened
app.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
from huggingface_hub import login
|
4 |
-
from transformers import
|
5 |
from PIL import Image
|
6 |
-
import requests
|
7 |
import torch
|
8 |
|
9 |
# Step 1: Log in to Hugging Face with your access token from secrets
|
@@ -13,57 +12,82 @@ if huggingface_token:
|
|
13 |
else:
|
14 |
st.error("Hugging Face token not found. Please set it in the Secrets section.")
|
15 |
|
16 |
-
# Step 2: Load the model and
|
17 |
-
model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct" # Adjust if needed
|
18 |
try:
|
19 |
-
|
20 |
-
model =
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
except Exception as e:
|
23 |
-
st.error(f"Error loading model: {str(e)}")
|
24 |
|
25 |
# Step 3: Create a simple Streamlit app
|
26 |
def main():
|
27 |
st.title("Llama 3.2 11B Vision Model")
|
28 |
st.write("Upload an image and enter a prompt to generate output.")
|
29 |
-
|
30 |
# Upload image
|
31 |
image_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
32 |
prompt = st.text_area("Enter your prompt here:")
|
33 |
-
|
34 |
if st.button("Generate Output"):
|
35 |
if image_file and prompt:
|
36 |
# Load image
|
37 |
-
image = Image.open(image_file)
|
38 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
39 |
-
|
40 |
-
# Preprocess the image if needed (convert to tensor, etc.)
|
41 |
-
# This depends on how the model expects the image input
|
42 |
-
|
43 |
-
# Example of converting image to a format suitable for the model
|
44 |
-
# Note: Adjust this part based on your model's requirements.
|
45 |
-
# Here, we're just using a placeholder for the model input.
|
46 |
-
# You might need to resize or normalize the image based on the model's requirements.
|
47 |
-
# For example:
|
48 |
-
# image_tensor = preprocess_image(image)
|
49 |
|
50 |
try:
|
51 |
-
# Prepare the
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
with torch.no_grad():
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
60 |
# Decode the output
|
61 |
-
output_text =
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
except Exception as e:
|
64 |
st.error(f"Error during prediction: {str(e)}")
|
65 |
else:
|
66 |
st.warning("Please upload an image and enter a prompt.")
|
67 |
|
68 |
if __name__ == "__main__":
|
69 |
-
main()
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
from huggingface_hub import login
|
4 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
5 |
from PIL import Image
|
|
|
6 |
import torch
|
7 |
|
8 |
# Step 1: Log in to Hugging Face with your access token from secrets
|
|
|
12 |
else:
|
13 |
st.error("Hugging Face token not found. Please set it in the Secrets section.")
|
14 |
|
15 |
+
# Step 2: Load the model and processor
|
|
|
16 |
try:
|
17 |
+
model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
18 |
+
model = MllamaForConditionalGeneration.from_pretrained(
|
19 |
+
model_name,
|
20 |
+
use_auth_token=huggingface_token,
|
21 |
+
torch_dtype=torch.bfloat16,
|
22 |
+
device_map="auto",
|
23 |
+
)
|
24 |
+
processor = AutoProcessor.from_pretrained(
|
25 |
+
model_name,
|
26 |
+
use_auth_token=huggingface_token,
|
27 |
+
)
|
28 |
+
st.success("Model and processor loaded successfully!")
|
29 |
except Exception as e:
|
30 |
+
st.error(f"Error loading model or processor: {str(e)}")
|
31 |
|
32 |
# Step 3: Create a simple Streamlit app
|
33 |
def main():
|
34 |
st.title("Llama 3.2 11B Vision Model")
|
35 |
st.write("Upload an image and enter a prompt to generate output.")
|
36 |
+
|
37 |
# Upload image
|
38 |
image_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
39 |
prompt = st.text_area("Enter your prompt here:")
|
40 |
+
|
41 |
if st.button("Generate Output"):
|
42 |
if image_file and prompt:
|
43 |
# Load image
|
44 |
+
image = Image.open(image_file).convert("RGB")
|
45 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
try:
|
48 |
+
# Prepare the messages in the format expected by the processor
|
49 |
+
messages = [
|
50 |
+
{
|
51 |
+
"role": "user",
|
52 |
+
"content": [
|
53 |
+
{"type": "text", "text": prompt},
|
54 |
+
{"type": "image"}
|
55 |
+
]
|
56 |
+
}
|
57 |
+
]
|
58 |
+
|
59 |
+
# Apply chat template
|
60 |
+
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
61 |
+
|
62 |
+
# Prepare inputs for the model
|
63 |
+
inputs = processor(
|
64 |
+
text=input_text,
|
65 |
+
images=[image],
|
66 |
+
return_tensors="pt"
|
67 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
68 |
+
|
69 |
+
# Generate output
|
70 |
with torch.no_grad():
|
71 |
+
output_ids = model.generate(
|
72 |
+
**inputs,
|
73 |
+
max_new_tokens=250,
|
74 |
+
)
|
75 |
+
|
76 |
# Decode the output
|
77 |
+
output_text = processor.batch_decode(output_ids, skip_special_tokens=True)[0]
|
78 |
+
|
79 |
+
# Extract the generated response
|
80 |
+
# Remove the prompt part from the output_text
|
81 |
+
if input_text in output_text:
|
82 |
+
generated_output = output_text.replace(input_text, "").strip()
|
83 |
+
else:
|
84 |
+
generated_output = output_text.strip()
|
85 |
+
|
86 |
+
st.write("Generated Output:", generated_output)
|
87 |
except Exception as e:
|
88 |
st.error(f"Error during prediction: {str(e)}")
|
89 |
else:
|
90 |
st.warning("Please upload an image and enter a prompt.")
|
91 |
|
92 |
if __name__ == "__main__":
|
93 |
+
main()
|