VoiceCloning-be's picture
modified: .gitattributes
2c02b19
raw
history blame
9.74 kB
import os
import sys
import glob
import time
import tqdm
import torch
import torchcrepe
import numpy as np
import concurrent.futures
import multiprocessing as mp
# Zluda
if torch.cuda.is_available() and torch.cuda.get_device_name().endswith("[ZLUDA]"):
torch.backends.cudnn.enabled = False
torch.backends.cuda.enable_flash_sdp(False)
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_mem_efficient_sdp(False)
now_dir = os.getcwd()
sys.path.append(os.path.join(now_dir))
from rvc.lib.utils import load_audio, load_embedding
from rvc.train.extract.preparing_files import generate_config, generate_filelist
from rvc.lib.predictors.RMVPE import RMVPE0Predictor
from rvc.configs.config import Config
# Load config
config = Config()
mp.set_start_method("spawn", force=True)
class FeatureInput:
"""Class for F0 extraction."""
def __init__(self, sample_rate=16000, hop_size=160, device="cpu"):
self.fs = sample_rate
self.hop = hop_size
self.f0_bin = 256
self.f0_max = 1100.0
self.f0_min = 50.0
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
self.device = device
self.model_rmvpe = None
def compute_f0(self, np_arr, f0_method, hop_length):
"""Extract F0 using the specified method."""
if f0_method == "crepe":
return self.get_crepe(np_arr, hop_length)
elif f0_method == "rmvpe":
return self.model_rmvpe.infer_from_audio(np_arr, thred=0.03)
else:
raise ValueError(f"Unknown F0 method: {f0_method}")
def get_crepe(self, x, hop_length):
"""Extract F0 using CREPE."""
audio = torch.from_numpy(x.astype(np.float32)).to(self.device)
audio /= torch.quantile(torch.abs(audio), 0.999)
audio = audio.unsqueeze(0)
pitch = torchcrepe.predict(
audio,
self.fs,
hop_length,
self.f0_min,
self.f0_max,
"full",
batch_size=hop_length * 2,
device=audio.device,
pad=True,
)
source = pitch.squeeze(0).cpu().float().numpy()
source[source < 0.001] = np.nan
target = np.interp(
np.arange(0, len(source) * (x.size // self.hop), len(source))
/ (x.size // self.hop),
np.arange(0, len(source)),
source,
)
return np.nan_to_num(target)
def coarse_f0(self, f0):
"""Convert F0 to coarse F0."""
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel = np.clip(
(f0_mel - self.f0_mel_min)
* (self.f0_bin - 2)
/ (self.f0_mel_max - self.f0_mel_min)
+ 1,
1,
self.f0_bin - 1,
)
return np.rint(f0_mel).astype(int)
def process_file(self, file_info, f0_method, hop_length):
"""Process a single audio file for F0 extraction."""
inp_path, opt_path1, opt_path2, _ = file_info
if os.path.exists(opt_path1) and os.path.exists(opt_path2):
return
try:
np_arr = load_audio(inp_path, 16000)
feature_pit = self.compute_f0(np_arr, f0_method, hop_length)
np.save(opt_path2, feature_pit, allow_pickle=False)
coarse_pit = self.coarse_f0(feature_pit)
np.save(opt_path1, coarse_pit, allow_pickle=False)
except Exception as error:
print(
f"An error occurred extracting file {inp_path} on {self.device}: {error}"
)
def process_files(
self, files, f0_method, hop_length, device_num, device, n_threads
):
"""Process multiple files."""
self.device = device
if f0_method == "rmvpe":
self.model_rmvpe = RMVPE0Predictor(
os.path.join("rvc", "models", "predictors", "rmvpe.pt"),
is_half=False,
device=device,
)
else:
n_threads = 1
n_threads = 1 if n_threads == 0 else n_threads
def process_file_wrapper(file_info):
self.process_file(file_info, f0_method, hop_length)
with tqdm.tqdm(total=len(files), leave=True, position=device_num) as pbar:
# using multi-threading
with concurrent.futures.ThreadPoolExecutor(
max_workers=n_threads
) as executor:
futures = [
executor.submit(process_file_wrapper, file_info)
for file_info in files
]
for future in concurrent.futures.as_completed(futures):
pbar.update(1)
def run_pitch_extraction(files, devices, f0_method, hop_length, num_processes):
devices_str = ", ".join(devices)
print(
f"Starting pitch extraction with {num_processes} cores on {devices_str} using {f0_method}..."
)
start_time = time.time()
fe = FeatureInput()
# split the task between devices
ps = []
num_devices = len(devices)
for i, device in enumerate(devices):
p = mp.Process(
target=fe.process_files,
args=(
files[i::num_devices],
f0_method,
hop_length,
i,
device,
num_processes // num_devices,
),
)
ps.append(p)
p.start()
for i, device in enumerate(devices):
ps[i].join()
elapsed_time = time.time() - start_time
print(f"Pitch extraction completed in {elapsed_time:.2f} seconds.")
def process_file_embedding(
files, version, embedder_model, embedder_model_custom, device_num, device, n_threads
):
dtype = torch.float16 if config.is_half and "cuda" in device else torch.float32
model = load_embedding(embedder_model, embedder_model_custom).to(dtype).to(device)
n_threads = 1 if n_threads == 0 else n_threads
def process_file_embedding_wrapper(file_info):
wav_file_path, _, _, out_file_path = file_info
if os.path.exists(out_file_path):
return
feats = torch.from_numpy(load_audio(wav_file_path, 16000)).to(dtype).to(device)
feats = feats.view(1, -1)
with torch.no_grad():
feats = model(feats)["last_hidden_state"]
feats = (
model.final_proj(feats[0]).unsqueeze(0) if version == "v1" else feats
)
feats = feats.squeeze(0).float().cpu().numpy()
if not np.isnan(feats).any():
np.save(out_file_path, feats, allow_pickle=False)
else:
print(f"{file} contains NaN values and will be skipped.")
with tqdm.tqdm(total=len(files), leave=True, position=device_num) as pbar:
# using multi-threading
with concurrent.futures.ThreadPoolExecutor(max_workers=n_threads) as executor:
futures = [
executor.submit(process_file_embedding_wrapper, file_info)
for file_info in files
]
for future in concurrent.futures.as_completed(futures):
pbar.update(1)
def run_embedding_extraction(
files, devices, version, embedder_model, embedder_model_custom
):
start_time = time.time()
devices_str = ", ".join(devices)
print(
f"Starting embedding extraction with {num_processes} cores on {devices_str}..."
)
# split the task between devices
ps = []
num_devices = len(devices)
for i, device in enumerate(devices):
p = mp.Process(
target=process_file_embedding,
args=(
files[i::num_devices],
version,
embedder_model,
embedder_model_custom,
i,
device,
num_processes // num_devices,
),
)
ps.append(p)
p.start()
for i, device in enumerate(devices):
ps[i].join()
elapsed_time = time.time() - start_time
print(f"Embedding extraction completed in {elapsed_time:.2f} seconds.")
if __name__ == "__main__":
exp_dir = sys.argv[1]
f0_method = sys.argv[2]
hop_length = int(sys.argv[3])
num_processes = int(sys.argv[4])
gpus = sys.argv[5]
version = sys.argv[6]
pitch_guidance = sys.argv[7]
sample_rate = sys.argv[8]
embedder_model = sys.argv[9]
embedder_model_custom = sys.argv[10] if len(sys.argv) > 10 else None
# prep
wav_path = os.path.join(exp_dir, "sliced_audios_16k")
os.makedirs(os.path.join(exp_dir, "f0"), exist_ok=True)
os.makedirs(os.path.join(exp_dir, "f0_voiced"), exist_ok=True)
os.makedirs(os.path.join(exp_dir, version + "_extracted"), exist_ok=True)
files = []
for file in glob.glob(os.path.join(wav_path, "*.wav")):
file_name = os.path.basename(file)
file_info = [
file, # full path to sliced 16k wav
os.path.join(exp_dir, "f0", file_name + ".npy"),
os.path.join(exp_dir, "f0_voiced", file_name + ".npy"),
os.path.join(
exp_dir, version + "_extracted", file_name.replace("wav", "npy")
),
]
files.append(file_info)
devices = ["cpu"] if gpus == "-" else [f"cuda:{idx}" for idx in gpus.split("-")]
# Run Pitch Extraction
run_pitch_extraction(files, devices, f0_method, hop_length, num_processes)
# Run Embedding Extraction
run_embedding_extraction(
files, devices, version, embedder_model, embedder_model_custom
)
# Run Preparing Files
generate_config(version, sample_rate, exp_dir)
generate_filelist(pitch_guidance, exp_dir, version, sample_rate)