Spaces:
Sleeping
Sleeping
Delete.app.py
#11
by
Waseem7711
- opened
app.py
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
from langchain_openai import ChatOpenAI
|
2 |
-
from langchain_core.prompts import ChatPromptTemplate
|
3 |
-
from langchain_core.output_parsers import StrOutputParser
|
4 |
-
from langchain_community.llms import Ollama
|
5 |
-
import streamlit as st
|
6 |
-
import os
|
7 |
-
from dotenv import load_dotenv
|
8 |
-
|
9 |
-
# Load environment variables
|
10 |
-
load_dotenv()
|
11 |
-
|
12 |
-
# Set environment variables
|
13 |
-
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
14 |
-
os.environ["LANGCHAIN_API_KEY"] = os.getenv("LANGCHAIN_API_KEY")
|
15 |
-
|
16 |
-
# Prompt Template
|
17 |
-
prompt = ChatPromptTemplate.from_messages(
|
18 |
-
[
|
19 |
-
("system", "You are a helpful assistant. Please respond to the user queries"),
|
20 |
-
("user", "Question: {question}")
|
21 |
-
]
|
22 |
-
)
|
23 |
-
|
24 |
-
# Streamlit app setup
|
25 |
-
st.title('Langchain Demo With LLAMA2 API')
|
26 |
-
|
27 |
-
# User input
|
28 |
-
input_text = st.text_input("Search the topic you want")
|
29 |
-
|
30 |
-
# Ollama LLM (ensure the model is available, or access it through Hugging Face API)
|
31 |
-
llm = Ollama(model="llama2")
|
32 |
-
output_parser = StrOutputParser()
|
33 |
-
chain = prompt | llm | output_parser
|
34 |
-
|
35 |
-
# Display result when user inputs text
|
36 |
-
if input_text:
|
37 |
-
try:
|
38 |
-
response = chain.invoke({"question": input_text})
|
39 |
-
st.write(response)
|
40 |
-
except Exception as e:
|
41 |
-
st.error(f"Error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|