chat / app.py
pabloce's picture
Update app.py
72fd759 verified
raw
history blame
3.71 kB
import spaces
import json
import subprocess
import gradio as gr
from huggingface_hub import hf_hub_download
subprocess.run('pip install llama-cpp-python==0.2.75 --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu124', shell=True)
subprocess.run('pip install llama-cpp-agent==0.2.10', shell=True)
hf_hub_download(repo_id="bartowski/dolphin-2.9.1-yi-1.5-34b-GGUF", filename="dolphin-2.9.1-yi-1.5-34b-Q6_K.gguf", local_dir = "./models")
hf_hub_download(repo_id="bartowski/dolphin-2.9.1-yi-1.5-9b-GGUF", filename="dolphin-2.9.1-yi-1.5-9b-f32.gguf", local_dir = "./models")
css = """
.message-row {
justify-content: space-evenly !important;
}
.message-bubble-border {
border-radius: 6px !important;
border-color: #21293b !important;
}
.user {
background: #1e293b !important;
}
.assistant, .pending {
background: #0f172a !important;
}
"""
@spaces.GPU(duration=120)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
model,
):
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent
from llama_cpp_agent import MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
llm = Llama(
model_path=f"models/{model}",
n_gpu_layers=81,
)
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt="You are a helpful assistant.",
predefined_messages_formatter_type=MessagesFormatterType.CHATML,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.max_tokens = max_tokens
settings.stream = True
messages = BasicChatHistory()
for msn in history:
user = {
'role': Roles.user,
'content': msn[0]
}
assistant = {
'role': Roles.assistant,
'content': msn[1]
}
messages.add_message(user)
messages.add_message(assistant)
stream = agent.get_chat_response(message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False)
outputs = ""
for output in stream:
outputs += output
yield outputs
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Slider(minimum=1, maximum=8192, value=8192, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
gr.Dropdown(['dolphin-2.9.1-yi-1.5-34b-Q6_K.gguf', 'dolphin-2.9.1-yi-1.5-9b-f32.gguf'], value="dolphin-2.9.1-yi-1.5-34b-Q6_K.gguf", label="Model"),
],
theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="blue", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
body_background_fill_dark="#0f172a",
block_background_fill_dark="#0f172a",
block_title_background_fill_dark="#0c1425",
input_background_fill_dark="#0c1425",
button_secondary_background_fill_dark="#0c1425",
border_color_primary_dark="#21293b",
background_fill_secondary_dark="#0f172a"
),
css=css,
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
submit_btn="Send",
description="Cognitive Computation: 🐬 Chat multi llm"
)
if __name__ == "__main__":
demo.launch()