Spaces:
Running
on
Zero
Running
on
Zero
from types import FunctionType | |
from typing import Any, Dict, List | |
from diffusers import UNet2DConditionModel | |
import torch | |
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel, ImageProjection | |
from diffusers.models.attention_processor import Attention, AttnProcessor, AttnProcessor2_0, XFormersAttnProcessor | |
from dataclasses import dataclass, field | |
from diffusers.loaders import IPAdapterMixin | |
from custum_3d_diffusion.custum_modules.attention_processors import add_extra_processor, switch_extra_processor, add_multiview_processor, switch_multiview_processor, add_switch, change_switch | |
class AttnConfig: | |
""" | |
* CrossAttention: Attention module (inherits knowledge), LoRA module (achieves fine-tuning), IPAdapter module (achieves conceptual control). | |
* SelfAttention: Attention module (inherits knowledge), LoRA module (achieves fine-tuning), Reference Attention module (achieves pixel-level control). | |
* Multiview Attention module: Multiview Attention module (achieves multi-view consistency). | |
* Cross Modality Attention module: Cross Modality Attention module (achieves multi-modality consistency). | |
For setups: | |
train_xxx_lr is implemented in the U-Net architecture. | |
enable_xxx_lora is implemented in the U-Net architecture. | |
enable_xxx_ip is implemented in the processor and U-Net architecture. | |
enable_xxx_ref_proj_in is implemented in the processor. | |
""" | |
latent_size: int = 64 | |
train_lr: float = 0 | |
# for cross attention | |
# 0 learning rate for not training | |
train_cross_attn_lr: float = 0 | |
train_cross_attn_lora_lr: float = 0 | |
train_cross_attn_ip_lr: float = 0 # 0 for not trained | |
init_cross_attn_lora: bool = False | |
enable_cross_attn_lora: bool = False | |
init_cross_attn_ip: bool = False | |
enable_cross_attn_ip: bool = False | |
cross_attn_lora_rank: int = 64 # 0 for not enabled | |
cross_attn_lora_only_kv: bool = False | |
ipadapter_pretrained_name: str = "h94/IP-Adapter" | |
ipadapter_subfolder_name: str = "models" | |
ipadapter_weight_name: str = "ip-adapter-plus_sd15.safetensors" | |
ipadapter_effect_on: str = "all" # all, first | |
# for self attention | |
train_self_attn_lr: float = 0 | |
train_self_attn_lora_lr: float = 0 | |
init_self_attn_lora: bool = False | |
enable_self_attn_lora: bool = False | |
self_attn_lora_rank: int = 64 | |
self_attn_lora_only_kv: bool = False | |
train_self_attn_ref_lr: float = 0 | |
train_ref_unet_lr: float = 0 | |
init_self_attn_ref: bool = False | |
enable_self_attn_ref: bool = False | |
self_attn_ref_other_model_name: str = "" | |
self_attn_ref_position: str = "attn1" | |
self_attn_ref_pixel_wise_crosspond: bool = False # enable pixel_wise_crosspond in refattn | |
self_attn_ref_chain_pos: str = "parralle" # before or parralle or after | |
self_attn_ref_effect_on: str = "all" # all or first, for _crosspond attn | |
self_attn_ref_zero_init: bool = True | |
use_simple3d_attn: bool = False | |
# for multiview attention | |
init_multiview_attn: bool = False | |
enable_multiview_attn: bool = False | |
multiview_attn_position: str = "attn1" | |
multiview_chain_pose: str = "parralle" # before or parralle or after | |
num_modalities: int = 1 | |
use_mv_joint_attn: bool = False | |
# for unet | |
init_unet_path: str = "runwayml/stable-diffusion-v1-5" | |
init_num_cls_label: int = 0 # for initialize | |
cls_labels: List[int] = field(default_factory=lambda: []) | |
cls_label_type: str = "embedding" | |
cat_condition: bool = False # cat condition to input | |
class Configurable: | |
attn_config: AttnConfig | |
def set_config(self, attn_config: AttnConfig): | |
raise NotImplementedError() | |
def update_config(self, attn_config: AttnConfig): | |
self.attn_config = attn_config | |
def do_set_config(self, attn_config: AttnConfig): | |
self.set_config(attn_config) | |
for name, module in self.named_modules(): | |
if isinstance(module, Configurable): | |
if hasattr(module, "do_set_config"): | |
module.do_set_config(attn_config) | |
else: | |
print(f"Warning: {name} has no attribute do_set_config, but is an instance of Configurable") | |
module.attn_config = attn_config | |
def do_update_config(self, attn_config: AttnConfig): | |
self.update_config(attn_config) | |
for name, module in self.named_modules(): | |
if isinstance(module, Configurable): | |
if hasattr(module, "do_update_config"): | |
module.do_update_config(attn_config) | |
else: | |
print(f"Warning: {name} has no attribute do_update_config, but is an instance of Configurable") | |
module.attn_config = attn_config | |
from diffusers import ModelMixin # Must import ModelMixin for CompiledUNet | |
class UnifieldWrappedUNet(UNet2DConditionModel): | |
forward_hook: FunctionType | |
def forward(self, *args, **kwargs): | |
if hasattr(self, 'forward_hook'): | |
return self.forward_hook(super().forward, *args, **kwargs) | |
return super().forward(*args, **kwargs) | |
class ConfigurableUNet2DConditionModel(Configurable, IPAdapterMixin): | |
unet: UNet2DConditionModel | |
cls_embedding_param_dict = {} | |
cross_attn_lora_param_dict = {} | |
self_attn_lora_param_dict = {} | |
cross_attn_param_dict = {} | |
self_attn_param_dict = {} | |
ipadapter_param_dict = {} | |
ref_attn_param_dict = {} | |
ref_unet_param_dict = {} | |
multiview_attn_param_dict = {} | |
other_param_dict = {} | |
rev_param_name_mapping = {} | |
class_labels = [] | |
def set_class_labels(self, class_labels: torch.Tensor): | |
if self.attn_config.init_num_cls_label != 0: | |
self.class_labels = class_labels.to(self.unet.device).long() | |
def __init__(self, init_config: AttnConfig, weight_dtype) -> None: | |
super().__init__() | |
self.weight_dtype = weight_dtype | |
self.set_config(init_config) | |
def enable_xformers_memory_efficient_attention(self): | |
self.unet.enable_xformers_memory_efficient_attention | |
def recursive_add_processors(name: str, module: torch.nn.Module): | |
for sub_name, child in module.named_children(): | |
recursive_add_processors(f"{name}.{sub_name}", child) | |
if isinstance(module, Attention): | |
if hasattr(module, 'xformers_not_supported'): | |
return | |
old_processor = module.get_processor() | |
if isinstance(old_processor, (AttnProcessor, AttnProcessor2_0)): | |
module.set_use_memory_efficient_attention_xformers(True) | |
for name, module in self.unet.named_children(): | |
recursive_add_processors(name, module) | |
def __getattr__(self, name: str) -> Any: | |
try: | |
return super().__getattr__(name) | |
except AttributeError: | |
return getattr(self.unet, name) | |
# --- for IPAdapterMixin | |
def register_modules(self, **kwargs): | |
for name, module in kwargs.items(): | |
# set models | |
setattr(self, name, module) | |
def register_to_config(self, **kwargs): | |
pass | |
def unload_ip_adapter(self): | |
raise NotImplementedError() | |
# --- for Configurable | |
def get_refunet(self): | |
if self.attn_config.self_attn_ref_other_model_name == "self": | |
return self.unet | |
else: | |
return self.unet.ref_unet | |
def set_config(self, attn_config: AttnConfig): | |
self.attn_config = attn_config | |
unet_type = UnifieldWrappedUNet | |
# class_embed_type = "projection" for 'camera' | |
# class_embed_type = None for 'embedding' | |
unet_kwargs = {} | |
if attn_config.init_num_cls_label > 0: | |
if attn_config.cls_label_type == "embedding": | |
unet_kwargs = { | |
"num_class_embeds": attn_config.init_num_cls_label, | |
"device_map": None, | |
"low_cpu_mem_usage": False, | |
"class_embed_type": None, | |
} | |
else: | |
raise ValueError(f"cls_label_type {attn_config.cls_label_type} is not supported") | |
self.unet: UnifieldWrappedUNet = unet_type.from_pretrained( | |
attn_config.init_unet_path, subfolder="unet", torch_dtype=self.weight_dtype, | |
**unet_kwargs | |
) | |
assert isinstance(self.unet, UnifieldWrappedUNet) | |
self.unet.forward_hook = self.unet_forward_hook | |
if self.attn_config.cat_condition: | |
# double in_channels | |
if self.unet.config.in_channels != 8: | |
self.unet.register_to_config(in_channels=self.unet.config.in_channels * 2) | |
# repeate unet.conv_in weight twice | |
doubled_conv_in = torch.nn.Conv2d(self.unet.conv_in.in_channels * 2, self.unet.conv_in.out_channels, self.unet.conv_in.kernel_size, self.unet.conv_in.stride, self.unet.conv_in.padding) | |
doubled_conv_in.weight.data = torch.cat([self.unet.conv_in.weight.data, torch.zeros_like(self.unet.conv_in.weight.data)], dim=1) | |
doubled_conv_in.bias.data = self.unet.conv_in.bias.data | |
self.unet.conv_in = doubled_conv_in | |
used_param_ids = set() | |
if attn_config.init_cross_attn_lora: | |
# setup lora | |
from peft import LoraConfig | |
from peft.utils import get_peft_model_state_dict | |
if attn_config.cross_attn_lora_only_kv: | |
target_modules=["attn2.to_k", "attn2.to_v"] | |
else: | |
target_modules=["attn2.to_k", "attn2.to_q", "attn2.to_v", "attn2.to_out.0"] | |
lora_config: LoraConfig = LoraConfig( | |
r=attn_config.cross_attn_lora_rank, | |
lora_alpha=attn_config.cross_attn_lora_rank, | |
init_lora_weights="gaussian", | |
target_modules=target_modules, | |
) | |
adapter_name="cross_attn_lora" | |
self.unet.add_adapter(lora_config, adapter_name=adapter_name) | |
# update cross_attn_lora_param_dict | |
self.cross_attn_lora_param_dict = {id(param): param for name, param in self.unet.named_parameters() if adapter_name in name and id(param) not in used_param_ids} | |
used_param_ids.update(self.cross_attn_lora_param_dict.keys()) | |
if attn_config.init_self_attn_lora: | |
# setup lora | |
from peft import LoraConfig | |
if attn_config.self_attn_lora_only_kv: | |
target_modules=["attn1.to_k", "attn1.to_v"] | |
else: | |
target_modules=["attn1.to_k", "attn1.to_q", "attn1.to_v", "attn1.to_out.0"] | |
lora_config: LoraConfig = LoraConfig( | |
r=attn_config.self_attn_lora_rank, | |
lora_alpha=attn_config.self_attn_lora_rank, | |
init_lora_weights="gaussian", | |
target_modules=target_modules, | |
) | |
adapter_name="self_attn_lora" | |
self.unet.add_adapter(lora_config, adapter_name=adapter_name) | |
# update cross_self_lora_param_dict | |
self.self_attn_lora_param_dict = {id(param): param for name, param in self.unet.named_parameters() if adapter_name in name and id(param) not in used_param_ids} | |
used_param_ids.update(self.self_attn_lora_param_dict.keys()) | |
if attn_config.init_num_cls_label != 0: | |
self.cls_embedding_param_dict = {id(param): param for param in self.unet.class_embedding.parameters()} | |
used_param_ids.update(self.cls_embedding_param_dict.keys()) | |
self.set_class_labels(torch.tensor(attn_config.cls_labels).long()) | |
if attn_config.init_cross_attn_ip: | |
self.image_encoder = None | |
# setup ipadapter | |
self.load_ip_adapter( | |
attn_config.ipadapter_pretrained_name, | |
subfolder=attn_config.ipadapter_subfolder_name, | |
weight_name=attn_config.ipadapter_weight_name | |
) | |
# warp ip_adapter_attn_proc with switch | |
from diffusers.models.attention_processor import IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0 | |
add_switch(self.unet, module_filter=lambda x: isinstance(x, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)), switch_dict_fn=lambda x: {"ipadapter": x, "default": XFormersAttnProcessor()}, switch_name="ipadapter_switch", enabled_proc="ipadapter") | |
# update ipadapter_param_dict | |
# weights are in attention processors and unet.encoder_hid_proj | |
self.ipadapter_param_dict = {id(param): param for param in self.unet.encoder_hid_proj.parameters() if id(param) not in used_param_ids} | |
used_param_ids.update(self.ipadapter_param_dict.keys()) | |
print("DEBUG: ipadapter_param_dict len in encoder_hid_proj", len(self.ipadapter_param_dict)) | |
for name, processor in self.unet.attn_processors.items(): | |
if hasattr(processor, "to_k_ip"): | |
self.ipadapter_param_dict.update({id(param): param for param in processor.parameters()}) | |
print(f"DEBUG: ipadapter_param_dict len in all", len(self.ipadapter_param_dict)) | |
ref_unet = None | |
if attn_config.init_self_attn_ref: | |
# setup reference attention processor | |
if attn_config.self_attn_ref_other_model_name == "self": | |
raise NotImplementedError("self reference is not fully implemented") | |
else: | |
ref_unet: UNet2DConditionModel = UNet2DConditionModel.from_pretrained( | |
attn_config.self_attn_ref_other_model_name, subfolder="unet", torch_dtype=self.unet.dtype | |
) | |
ref_unet.to(self.unet.device) | |
if self.attn_config.train_ref_unet_lr == 0: | |
ref_unet.eval() | |
ref_unet.requires_grad_(False) | |
else: | |
ref_unet.train() | |
add_extra_processor( | |
model=ref_unet, | |
enable_filter=lambda name: name.endswith(f"{attn_config.self_attn_ref_position}.processor"), | |
mode='extract', | |
with_proj_in=False, | |
pixel_wise_crosspond=False, | |
) | |
# NOTE: Here require cross_attention_dim in two unet's self attention should be the same | |
processor_dict = add_extra_processor( | |
model=self.unet, | |
enable_filter=lambda name: name.endswith(f"{attn_config.self_attn_ref_position}.processor"), | |
mode='inject', | |
with_proj_in=False, | |
pixel_wise_crosspond=attn_config.self_attn_ref_pixel_wise_crosspond, | |
crosspond_effect_on=attn_config.self_attn_ref_effect_on, | |
crosspond_chain_pos=attn_config.self_attn_ref_chain_pos, | |
simple_3d=attn_config.use_simple3d_attn, | |
) | |
self.ref_unet_param_dict = {id(param): param for name, param in ref_unet.named_parameters() if id(param) not in used_param_ids and (attn_config.self_attn_ref_position in name)} | |
if attn_config.self_attn_ref_chain_pos != "after": | |
# pop untrainable paramters | |
for name, param in ref_unet.named_parameters(): | |
if id(param) in self.ref_unet_param_dict and ('up_blocks.3.attentions.2.transformer_blocks.0.' in name): | |
self.ref_unet_param_dict.pop(id(param)) | |
used_param_ids.update(self.ref_unet_param_dict.keys()) | |
# update ref_attn_param_dict | |
self.ref_attn_param_dict = {id(param): param for name, param in processor_dict.named_parameters() if id(param) not in used_param_ids} | |
used_param_ids.update(self.ref_attn_param_dict.keys()) | |
if attn_config.init_multiview_attn: | |
processor_dict = add_multiview_processor( | |
model = self.unet, | |
enable_filter = lambda name: name.endswith(f"{attn_config.multiview_attn_position}.processor"), | |
num_modalities = attn_config.num_modalities, | |
base_img_size = attn_config.latent_size, | |
chain_pos = attn_config.multiview_chain_pose, | |
) | |
# update multiview_attn_param_dict | |
self.multiview_attn_param_dict = {id(param): param for name, param in processor_dict.named_parameters() if id(param) not in used_param_ids} | |
used_param_ids.update(self.multiview_attn_param_dict.keys()) | |
# initialize cross_attn_param_dict parameters | |
self.cross_attn_param_dict = {id(param): param for name, param in self.unet.named_parameters() if "attn2" in name and id(param) not in used_param_ids} | |
used_param_ids.update(self.cross_attn_param_dict.keys()) | |
# initialize self_attn_param_dict parameters | |
self.self_attn_param_dict = {id(param): param for name, param in self.unet.named_parameters() if "attn1" in name and id(param) not in used_param_ids} | |
used_param_ids.update(self.self_attn_param_dict.keys()) | |
# initialize other_param_dict parameters | |
self.other_param_dict = {id(param): param for name, param in self.unet.named_parameters() if id(param) not in used_param_ids} | |
if ref_unet is not None: | |
self.unet.ref_unet = ref_unet | |
self.rev_param_name_mapping = {id(param): name for name, param in self.unet.named_parameters()} | |
self.update_config(attn_config, force_update=True) | |
return self.unet | |
_attn_keys_to_update = ["enable_cross_attn_lora", "enable_cross_attn_ip", "enable_self_attn_lora", "enable_self_attn_ref", "enable_multiview_attn", "cls_labels"] | |
def update_config(self, attn_config: AttnConfig, force_update=False): | |
assert isinstance(self.unet, UNet2DConditionModel), "unet must be an instance of UNet2DConditionModel" | |
need_to_update = False | |
# update cls_labels | |
for key in self._attn_keys_to_update: | |
if getattr(self.attn_config, key) != getattr(attn_config, key): | |
need_to_update = True | |
break | |
if not force_update and not need_to_update: | |
return | |
self.set_class_labels(torch.tensor(attn_config.cls_labels).long()) | |
# setup loras | |
if self.attn_config.init_cross_attn_lora or self.attn_config.init_self_attn_lora: | |
if attn_config.enable_cross_attn_lora or attn_config.enable_self_attn_lora: | |
cross_attn_lora_weight = 1. if attn_config.enable_cross_attn_lora > 0 else 0 | |
self_attn_lora_weight = 1. if attn_config.enable_self_attn_lora > 0 else 0 | |
self.unet.set_adapters(["cross_attn_lora", "self_attn_lora"], weights=[cross_attn_lora_weight, self_attn_lora_weight]) | |
else: | |
self.unet.disable_adapters() | |
# setup ipadapter | |
if self.attn_config.init_cross_attn_ip: | |
if attn_config.enable_cross_attn_ip: | |
change_switch(self.unet, "ipadapter_switch", "ipadapter") | |
else: | |
change_switch(self.unet, "ipadapter_switch", "default") | |
# setup reference attention processor | |
if self.attn_config.init_self_attn_ref: | |
if attn_config.enable_self_attn_ref: | |
switch_extra_processor(self.unet, enable_filter=lambda name: name.endswith(f"{attn_config.self_attn_ref_position}.processor")) | |
else: | |
switch_extra_processor(self.unet, enable_filter=lambda name: False) | |
# setup multiview attention processor | |
if self.attn_config.init_multiview_attn: | |
if attn_config.enable_multiview_attn: | |
switch_multiview_processor(self.unet, enable_filter=lambda name: name.endswith(f"{attn_config.multiview_attn_position}.processor")) | |
else: | |
switch_multiview_processor(self.unet, enable_filter=lambda name: False) | |
# update cls_labels | |
for key in self._attn_keys_to_update: | |
setattr(self.attn_config, key, getattr(attn_config, key)) | |
def unet_forward_hook(self, raw_forward, sample: torch.FloatTensor, timestep: torch.Tensor, encoder_hidden_states: torch.Tensor, *args, cross_attention_kwargs=None, condition_latents=None, class_labels=None, noisy_condition_input=False, cond_pixels_clip=None, **kwargs): | |
if class_labels is None and len(self.class_labels) > 0: | |
class_labels = self.class_labels.repeat(sample.shape[0] // self.class_labels.shape[0]).to(sample.device) | |
elif self.attn_config.init_num_cls_label != 0: | |
assert class_labels is not None, "class_labels should be passed if self.class_labels is empty and self.attn_config.init_num_cls_label is not 0" | |
if class_labels is not None: | |
if self.attn_config.cls_label_type == "embedding": | |
pass | |
else: | |
raise ValueError(f"cls_label_type {self.attn_config.cls_label_type} is not supported") | |
if self.attn_config.init_self_attn_ref and self.attn_config.enable_self_attn_ref: | |
# NOTE: extra step, extract condition | |
ref_dict = {} | |
ref_unet = self.get_refunet().to(sample.device) | |
assert condition_latents is not None | |
if self.attn_config.self_attn_ref_other_model_name == "self": | |
raise NotImplementedError() | |
else: | |
with torch.no_grad(): | |
cond_encoder_hidden_states = encoder_hidden_states.reshape(condition_latents.shape[0], -1, *encoder_hidden_states.shape[1:])[:, 0] | |
if timestep.dim() == 0: | |
cond_timestep = timestep | |
else: | |
cond_timestep = timestep.reshape(condition_latents.shape[0], -1)[:, 0] | |
ref_unet(condition_latents, cond_timestep, cond_encoder_hidden_states, cross_attention_kwargs=dict(ref_dict=ref_dict)) | |
# NOTE: extra step, inject condition | |
# Predict the noise residual and compute loss | |
if cross_attention_kwargs is None: | |
cross_attention_kwargs = {} | |
cross_attention_kwargs.update(ref_dict=ref_dict, mode='inject') | |
elif condition_latents is not None: | |
if not hasattr(self, 'condition_latents_raised'): | |
print("Warning! condition_latents is not None, but self_attn_ref is not enabled! This warning will only be raised once.") | |
self.condition_latents_raised = True | |
if self.attn_config.init_cross_attn_ip: | |
raise NotImplementedError() | |
if self.attn_config.cat_condition: | |
assert condition_latents is not None | |
B = condition_latents.shape[0] | |
cat_latents = condition_latents.reshape(B, 1, *condition_latents.shape[1:]).repeat(1, sample.shape[0] // B, 1, 1, 1).reshape(*sample.shape) | |
sample = torch.cat([sample, cat_latents], dim=1) | |
return raw_forward(sample, timestep, encoder_hidden_states, *args, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels, **kwargs) | |