air_quality / function.py
Yasaman's picture
Create function.py
02cdee1
raw
history blame
5.5 kB
import requests
import os
import pandas as pd
import datetime
import numpy as np
from sklearn.preprocessing import OrdinalEncoder
from dotenv import load_dotenv
load_dotenv()
## TODO: write function to display the color coding of the categoies both in the df and as a guide.
#sg like:
def color_aq(val):
color = 'green' if val else 'red'
return f'background-color: {color}'
# but better
def get_air_quality_data(station_name):
AIR_QUALITY_API_KEY = os.getenv('AIR_QUALITY_API_KEY')
request_value = f'https://api.waqi.info/feed/{station_name}/?token={AIR_QUALITY_API_KEY}'
answer = requests.get(request_value).json()["data"]
forecast = answer['forecast']['daily']
return [
answer["time"]["s"][:10], # Date
int(forecast['pm25'][0]['avg']), # avg predicted pm25
int(forecast['pm10'][0]['avg']), # avg predicted pm10
max(int(forecast['pm25'][0]['avg']), int(forecast['pm10'][0]['avg'])) # avg predicted aqi
]
def get_air_quality_df(data):
col_names = [
'date',
'pm25',
'pm10',
'aqi'
]
new_data = pd.DataFrame(
data
).T
new_data.columns = col_names
new_data['pm25'] = pd.to_numeric(new_data['pm25'])
new_data['pm10'] = pd.to_numeric(new_data['pm10'])
new_data['aqi'] = pd.to_numeric(new_data['aqi'])
return new_data
def get_weather_data_daily(city):
WEATHER_API_KEY = os.getenv('WEATHER_API_KEY')
answer = requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/{city}/today?unitGroup=metric&include=days&key={WEATHER_API_KEY}&contentType=json').json()
data = answer['days'][0]
return [
answer['address'].lower(),
data['datetime'],
data['tempmax'],
data['tempmin'],
data['temp'],
data['feelslikemax'],
data['feelslikemin'],
data['feelslike'],
data['dew'],
data['humidity'],
data['precip'],
data['precipprob'],
data['precipcover'],
data['snow'],
data['snowdepth'],
data['windgust'],
data['windspeed'],
data['winddir'],
data['pressure'],
data['cloudcover'],
data['visibility'],
data['solarradiation'],
data['solarenergy'],
data['uvindex'],
data['conditions']
]
def get_weather_data_weekly(city: str, start_date: datetime) -> pd.DataFrame:
WEATHER_API_KEY = os.getenv('WEATHER_API_KEY')
end_date = f"{start_date + datetime.timedelta(days=6):%Y-%m-%d}"
answer = requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/{city}/{start_date}/{end_date}?unitGroup=metric&include=days&key={WEATHER_API_KEY}&contentType=json').json()
weather_data = answer['days']
final_df = pd.DataFrame()
for i in range(7):
data = weather_data[i]
list_of_data = [
answer['address'].lower(),
data['datetime'],
data['tempmax'],
data['tempmin'],
data['temp'],
data['feelslikemax'],
data['feelslikemin'],
data['feelslike'],
data['dew'],
data['humidity'],
data['precip'],
data['precipprob'],
data['precipcover'],
data['snow'],
data['snowdepth'],
data['windgust'],
data['windspeed'],
data['winddir'],
data['pressure'],
data['cloudcover'],
data['visibility'],
data['solarradiation'],
data['solarenergy'],
data['uvindex'],
data['conditions']
]
weather_df = get_weather_df(list_of_data)
final_df = pd.concat([final_df, weather_df])
return final_df
def get_weather_df(data):
col_names = [
'name',
'date',
'tempmax',
'tempmin',
'temp',
'feelslikemax',
'feelslikemin',
'feelslike',
'dew',
'humidity',
'precip',
'precipprob',
'precipcover',
'snow',
'snowdepth',
'windgust',
'windspeed',
'winddir',
'pressure',
'cloudcover',
'visibility',
'solarradiation',
'solarenergy',
'uvindex',
'conditions'
]
new_data = pd.DataFrame(
data
).T
new_data.columns = col_names
for col in col_names:
if col not in ['name', 'date', 'conditions']:
new_data[col] = pd.to_numeric(new_data[col])
return new_data
def data_encoder(X):
X.drop(columns=['date', 'name'], inplace=True)
X['conditions'] = OrdinalEncoder().fit_transform(X[['conditions']])
return X
def get_aplevel(temps:np.ndarray, table:list):
boundary_list = np.array([0, 50, 100, 150, 200, 300]) # assert temps.shape == [x, 1]
redf = np.logical_not(temps<=boundary_list) # temps.shape[0] x boundary_list.shape[0] ndarray
hift = np.concatenate((np.roll(redf, -1)[:, :-1], np.full((temps.shape[0], 1), False)), axis = 1)
cat = np.nonzero(np.not_equal(redf,hift))
level = [table[el] for el in cat[1]]
return level
def get_color(level:list):
air_pollution_level = ['Good', 'Moderate', 'Unhealthy for sensitive Groups','Unhealthy' ,'Very Unhealthy', 'Hazardous']
color_list = ["Green", "Yellow", "DarkOrange", "Red", "Purple", "DarkRed"]
ind = [air_pollution_level.index(lel) for lel in level]
text = [f"color:{color_list[idex]};" for idex in ind]
return text