Spaces:
Build error
Build error
import gradio as gr | |
import hopsworks | |
import joblib | |
import pandas as pd | |
import numpy as np | |
import json | |
import time | |
from datetime import timedelta, datetime | |
from functions import * | |
project = hopsworks.login() | |
fs = project.get_feature_store() | |
def air_quality(city): | |
weather_df = pd.DataFrame() | |
for i in range(8): | |
weather_data = get_weather_df([get_weather_data(city,(datetime.now() + timedelta(days=i)).strftime("%Y-%m-%d"))]) | |
weather_df = weather_df.append(weather_data) | |
#weather_df = weather_df.drop(columns=["feelslikemin", "feelslikemax", "precipprob", "snowdepth", "uvindex", "date","city","conditions"]).fillna(0) | |
mr = project.get_model_registry() | |
model = mr.get_model("gradient_boost_model", version=2) | |
model_dir = model.download() | |
model = joblib.load(model_dir + "/model.pkl") | |
preds = model.predict(weather_df) | |
predictions = '' | |
for k in range(7): | |
predictions += "Predicted AQI on " + (datetime.now() + timedelta(days=k)).strftime('%Y-%m-%d') + ": " + str(int(preds[k]))+"\n" | |
print(predictions) | |
return predictions | |
demo = gr.Interface(fn=air_quality, title="Air quality predictor", | |
description="Input a value to get next weeks AQI prediction for Malmo", inputs="text", outputs="text") | |
if __name__ == "__main__": | |
demo.launch() | |