Spaces:
Runtime error
Runtime error
Super-Resolution-Anime-Diffusion
/
diffusers
/pipelines
/versatile_diffusion
/pipeline_versatile_diffusion_dual_guided.py
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
from typing import Callable, List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.utils.checkpoint | |
import PIL | |
from transformers import ( | |
CLIPFeatureExtractor, | |
CLIPTextModelWithProjection, | |
CLIPTokenizer, | |
CLIPVisionModelWithProjection, | |
) | |
from ...models import AutoencoderKL, UNet2DConditionModel | |
from ...models.attention import DualTransformer2DModel, Transformer2DModel | |
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler | |
from ...utils import is_accelerate_available, logging | |
from .modeling_text_unet import UNetFlatConditionModel | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class VersatileDiffusionDualGuidedPipeline(DiffusionPipeline): | |
r""" | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Parameters: | |
vqvae ([`VQModel`]): | |
Vector-quantized (VQ) Model to encode and decode images to and from latent representations. | |
bert ([`LDMBertModel`]): | |
Text-encoder model based on [BERT](https://huggingface.co/docs/transformers/model_doc/bert) architecture. | |
tokenizer (`transformers.BertTokenizer`): | |
Tokenizer of class | |
[BertTokenizer](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer). | |
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
""" | |
tokenizer: CLIPTokenizer | |
image_feature_extractor: CLIPFeatureExtractor | |
text_encoder: CLIPTextModelWithProjection | |
image_encoder: CLIPVisionModelWithProjection | |
image_unet: UNet2DConditionModel | |
text_unet: UNetFlatConditionModel | |
vae: AutoencoderKL | |
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] | |
_optional_components = ["text_unet"] | |
def __init__( | |
self, | |
tokenizer: CLIPTokenizer, | |
image_feature_extractor: CLIPFeatureExtractor, | |
text_encoder: CLIPTextModelWithProjection, | |
image_encoder: CLIPVisionModelWithProjection, | |
image_unet: UNet2DConditionModel, | |
text_unet: UNetFlatConditionModel, | |
vae: AutoencoderKL, | |
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], | |
): | |
super().__init__() | |
self.register_modules( | |
tokenizer=tokenizer, | |
image_feature_extractor=image_feature_extractor, | |
text_encoder=text_encoder, | |
image_encoder=image_encoder, | |
image_unet=image_unet, | |
text_unet=text_unet, | |
vae=vae, | |
scheduler=scheduler, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
if self.text_unet is not None and ( | |
"dual_cross_attention" not in self.image_unet.config or not self.image_unet.config.dual_cross_attention | |
): | |
# if loading from a universal checkpoint rather than a saved dual-guided pipeline | |
self._convert_to_dual_attention() | |
def remove_unused_weights(self): | |
self.register_modules(text_unet=None) | |
def _convert_to_dual_attention(self): | |
""" | |
Replace image_unet's `Transformer2DModel` blocks with `DualTransformer2DModel` that contains transformer blocks | |
from both `image_unet` and `text_unet` | |
""" | |
for name, module in self.image_unet.named_modules(): | |
if isinstance(module, Transformer2DModel): | |
parent_name, index = name.rsplit(".", 1) | |
index = int(index) | |
image_transformer = self.image_unet.get_submodule(parent_name)[index] | |
text_transformer = self.text_unet.get_submodule(parent_name)[index] | |
config = image_transformer.config | |
dual_transformer = DualTransformer2DModel( | |
num_attention_heads=config.num_attention_heads, | |
attention_head_dim=config.attention_head_dim, | |
in_channels=config.in_channels, | |
num_layers=config.num_layers, | |
dropout=config.dropout, | |
norm_num_groups=config.norm_num_groups, | |
cross_attention_dim=config.cross_attention_dim, | |
attention_bias=config.attention_bias, | |
sample_size=config.sample_size, | |
num_vector_embeds=config.num_vector_embeds, | |
activation_fn=config.activation_fn, | |
num_embeds_ada_norm=config.num_embeds_ada_norm, | |
) | |
dual_transformer.transformers[0] = image_transformer | |
dual_transformer.transformers[1] = text_transformer | |
self.image_unet.get_submodule(parent_name)[index] = dual_transformer | |
self.image_unet.register_to_config(dual_cross_attention=True) | |
def _revert_dual_attention(self): | |
""" | |
Revert the image_unet `DualTransformer2DModel` blocks back to `Transformer2DModel` with image_unet weights Call | |
this function if you reuse `image_unet` in another pipeline, e.g. `VersatileDiffusionPipeline` | |
""" | |
for name, module in self.image_unet.named_modules(): | |
if isinstance(module, DualTransformer2DModel): | |
parent_name, index = name.rsplit(".", 1) | |
index = int(index) | |
self.image_unet.get_submodule(parent_name)[index] = module.transformers[0] | |
self.image_unet.register_to_config(dual_cross_attention=False) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_attention_slicing with unet->image_unet | |
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): | |
r""" | |
Enable sliced attention computation. | |
When this option is enabled, the attention module will split the input tensor in slices, to compute attention | |
in several steps. This is useful to save some memory in exchange for a small speed decrease. | |
Args: | |
slice_size (`str` or `int`, *optional*, defaults to `"auto"`): | |
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If | |
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, | |
`attention_head_dim` must be a multiple of `slice_size`. | |
""" | |
if slice_size == "auto": | |
if isinstance(self.image_unet.config.attention_head_dim, int): | |
# half the attention head size is usually a good trade-off between | |
# speed and memory | |
slice_size = self.image_unet.config.attention_head_dim // 2 | |
else: | |
# if `attention_head_dim` is a list, take the smallest head size | |
slice_size = min(self.image_unet.config.attention_head_dim) | |
self.image_unet.set_attention_slice(slice_size) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_attention_slicing | |
def disable_attention_slicing(self): | |
r""" | |
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go | |
back to computing attention in one step. | |
""" | |
# set slice_size = `None` to disable `attention slicing` | |
self.enable_attention_slicing(None) | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | |
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a | |
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | |
""" | |
if is_accelerate_available(): | |
from accelerate import cpu_offload | |
else: | |
raise ImportError("Please install accelerate via `pip install accelerate`") | |
device = torch.device(f"cuda:{gpu_id}") | |
for cpu_offloaded_model in [self.image_unet, self.text_unet, self.text_encoder, self.vae]: | |
if cpu_offloaded_model is not None: | |
cpu_offload(cpu_offloaded_model, device) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device with unet->image_unet | |
def _execution_device(self): | |
r""" | |
Returns the device on which the pipeline's models will be executed. After calling | |
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
hooks. | |
""" | |
if self.device != torch.device("meta") or not hasattr(self.image_unet, "_hf_hook"): | |
return self.device | |
for module in self.image_unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def _encode_text_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `list(int)`): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
""" | |
def normalize_embeddings(encoder_output): | |
embeds = self.text_encoder.text_projection(encoder_output.last_hidden_state) | |
embeds_pooled = encoder_output.text_embeds | |
embeds = embeds / torch.norm(embeds_pooled.unsqueeze(1), dim=-1, keepdim=True) | |
return embeds | |
batch_size = len(prompt) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="pt").input_ids | |
if not torch.equal(text_input_ids, untruncated_ids): | |
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
text_embeddings = self.text_encoder( | |
text_input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
text_embeddings = normalize_embeddings(text_embeddings) | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = text_embeddings.shape | |
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1) | |
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance: | |
uncond_tokens = [""] * batch_size | |
max_length = text_input_ids.shape[-1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
uncond_embeddings = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
uncond_embeddings = normalize_embeddings(uncond_embeddings) | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = uncond_embeddings.shape[1] | |
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1) | |
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
return text_embeddings | |
def _encode_image_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `list(int)`): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
""" | |
def normalize_embeddings(encoder_output): | |
embeds = self.image_encoder.vision_model.post_layernorm(encoder_output.last_hidden_state) | |
embeds = self.image_encoder.visual_projection(embeds) | |
embeds_pooled = embeds[:, 0:1] | |
embeds = embeds / torch.norm(embeds_pooled, dim=-1, keepdim=True) | |
return embeds | |
batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
# get prompt text embeddings | |
image_input = self.image_feature_extractor(images=prompt, return_tensors="pt") | |
pixel_values = image_input.pixel_values.to(device).to(self.image_encoder.dtype) | |
image_embeddings = self.image_encoder(pixel_values) | |
image_embeddings = normalize_embeddings(image_embeddings) | |
# duplicate image embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = image_embeddings.shape | |
image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) | |
image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance: | |
uncond_images = [np.zeros((512, 512, 3)) + 0.5] * batch_size | |
uncond_images = self.image_feature_extractor(images=uncond_images, return_tensors="pt") | |
pixel_values = uncond_images.pixel_values.to(device).to(self.image_encoder.dtype) | |
uncond_embeddings = self.image_encoder(pixel_values) | |
uncond_embeddings = normalize_embeddings(uncond_embeddings) | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = uncond_embeddings.shape[1] | |
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1) | |
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and conditional embeddings into a single batch | |
# to avoid doing two forward passes | |
image_embeddings = torch.cat([uncond_embeddings, image_embeddings]) | |
return image_embeddings | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents | |
def decode_latents(self, latents): | |
latents = 1 / 0.18215 * latents | |
image = self.vae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
return image | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs(self, prompt, image, height, width, callback_steps): | |
if not isinstance(prompt, str) and not isinstance(prompt, PIL.Image.Image) and not isinstance(prompt, list): | |
raise ValueError(f"`prompt` has to be of type `str` `PIL.Image` or `list` but is {type(prompt)}") | |
if not isinstance(image, str) and not isinstance(image, PIL.Image.Image) and not isinstance(image, list): | |
raise ValueError(f"`image` has to be of type `str` `PIL.Image` or `list` but is {type(image)}") | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
if latents is None: | |
if device.type == "mps": | |
# randn does not work reproducibly on mps | |
latents = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device) | |
else: | |
latents = torch.randn(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
if latents.shape != shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def set_transformer_params(self, mix_ratio: float = 0.5, condition_types: Tuple = ("text", "image")): | |
for name, module in self.image_unet.named_modules(): | |
if isinstance(module, DualTransformer2DModel): | |
module.mix_ratio = mix_ratio | |
for i, type in enumerate(condition_types): | |
if type == "text": | |
module.condition_lengths[i] = self.text_encoder.config.max_position_embeddings | |
module.transformer_index_for_condition[i] = 1 # use the second (text) transformer | |
else: | |
module.condition_lengths[i] = 257 | |
module.transformer_index_for_condition[i] = 0 # use the first (image) transformer | |
def __call__( | |
self, | |
prompt: Union[PIL.Image.Image, List[PIL.Image.Image]], | |
image: Union[str, List[str]], | |
text_to_image_strength: float = 0.5, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[torch.Generator] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
**kwargs, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
height (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
if `guidance_scale` is less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator`, *optional*): | |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | |
deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
Examples: | |
```py | |
>>> from diffusers import VersatileDiffusionDualGuidedPipeline | |
>>> import torch | |
>>> import requests | |
>>> from io import BytesIO | |
>>> from PIL import Image | |
>>> # let's download an initial image | |
>>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" | |
>>> response = requests.get(url) | |
>>> image = Image.open(BytesIO(response.content)).convert("RGB") | |
>>> text = "a red car in the sun" | |
>>> pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained( | |
... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 | |
... ) | |
>>> pipe.remove_unused_weights() | |
>>> pipe = pipe.to("cuda") | |
>>> generator = torch.Generator(device="cuda").manual_seed(0) | |
>>> text_to_image_strength = 0.75 | |
>>> image = pipe( | |
... prompt=text, image=image, text_to_image_strength=text_to_image_strength, generator=generator | |
... ).images[0] | |
>>> image.save("./car_variation.png") | |
``` | |
Returns: | |
[`~pipelines.stable_diffusion.ImagePipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When | |
returning a tuple, the first element is a list with the generated images. | |
""" | |
# 0. Default height and width to unet | |
height = height or self.image_unet.config.sample_size * self.vae_scale_factor | |
width = width or self.image_unet.config.sample_size * self.vae_scale_factor | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs(prompt, image, height, width, callback_steps) | |
# 2. Define call parameters | |
prompt = [prompt] if not isinstance(prompt, list) else prompt | |
image = [image] if not isinstance(image, list) else image | |
batch_size = len(prompt) | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompts | |
text_embeddings = self._encode_text_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance) | |
image_embeddings = self._encode_image_prompt(image, device, num_images_per_prompt, do_classifier_free_guidance) | |
dual_prompt_embeddings = torch.cat([text_embeddings, image_embeddings], dim=1) | |
prompt_types = ("text", "image") | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latent variables | |
num_channels_latents = self.image_unet.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
dual_prompt_embeddings.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7. Combine the attention blocks of the image and text UNets | |
self.set_transformer_params(text_to_image_strength, prompt_types) | |
# 8. Denoising loop | |
for i, t in enumerate(self.progress_bar(timesteps)): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
noise_pred = self.image_unet(latent_model_input, t, encoder_hidden_states=dual_prompt_embeddings).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
# call the callback, if provided | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
# 9. Post-processing | |
image = self.decode_latents(latents) | |
# 10. Convert to PIL | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |