Yiwen-ntu's picture
Upload 2 files
14af97a verified
raw
history blame
24.1 kB
from transformers import AutoModelForCausalLM, AutoConfig, OPTConfig
from transformers.models.opt.modeling_opt import OPTForCausalLM, OPTModel, OPTDecoder, OPTLearnedPositionalEmbedding, OPTDecoderLayer
from typing import List, Optional, Tuple, Union
from einops import repeat
from transformers.modeling_outputs import (
CausalLMOutputWithPast,
)
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.utils import replace_return_docstrings
from transformers.modeling_outputs import BaseModelOutputWithPast
class ShapeOPTConfig(OPTConfig):
model_type = "shape_opt"
class ShapeOPT(OPTForCausalLM):
config_class = ShapeOPTConfig
def __init__(self, config: ShapeOPTConfig):
super(OPTForCausalLM, self).__init__(config)
self.model = ShapeOPTModel(config)
self.lm_head = nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="OPTConfig")
def forward(
self,
input_ids: torch.LongTensor = None,
face_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, OPTForCausalLM
>>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids = input_ids,
face_ids = face_ids,
attention_mask=attention_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0]).contiguous()
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class ShapeOPTModel(OPTModel):
config_class = ShapeOPTConfig
def __init__(self, config: ShapeOPTConfig):
super(OPTModel,self).__init__(config)
self.decoder = ShapeOPTDecoder(config)
# Initialize weights and apply final processing
self.post_init()
class ShapeOPTDecoder(OPTDecoder):
config_class = ShapeOPTConfig
def __init__(self, config: ShapeOPTConfig):
super(OPTDecoder,self).__init__(config)
self.config = config
self.dropout = config.dropout
self.layerdrop = config.layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.word_embed_proj_dim, self.padding_idx)
self.hidden_size = config.hidden_size
self.word_embed_proj_dim = config.word_embed_proj_dim
self.n_discrete_size = config.n_discrete_size
self.embed_positions = OPTLearnedPositionalEmbedding(config.max_position_embeddings, config.hidden_size)
self.token_embed_positions = OPTLoopEmbedding(10, config.word_embed_proj_dim, self.n_discrete_size) #padding_idx=self.padding_idx)
self.face_per_token = config.face_per_token
self.cond_length = config.cond_length
self.cond_embed = nn.Embedding(2, config.word_embed_proj_dim)
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
# with checkpoints that have been fine-tuned before transformers v4.20.1
# see https://github.com/facebookresearch/metaseq/pull/164
if config.do_layer_norm_before and not config._remove_final_layer_norm:
self.final_layer_norm = nn.LayerNorm(
config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine
)
else:
self.final_layer_norm = None
self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)])
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: torch.LongTensor = None,
face_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# OPT Decoder
# print("used my Trans")
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Transformer Decoder
if input_ids is not None and inputs_embeds is not None: # when train and first generate
assert False
elif input_ids is not None:
assert not self.training
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids)
face_embeds = self.token_embed_positions(attention_mask[:, self.cond_length:], face_ids, input_ids,
self.face_per_token)
inputs_embeds += face_embeds
cond_embed_query = torch.ones((inputs_embeds.shape[0], inputs_embeds.shape[1]), device=inputs_embeds.device,
dtype=inputs_embeds.dtype).long()
inputs_embeds = inputs_embeds + self.cond_embed(cond_embed_query)
elif inputs_embeds is not None:
# assert self.cond and not self.training
assert not self.training
self.token_embed_positions.init_state(inputs_embeds)
total_length = inputs_embeds.shape[1] # B x length x embeding
cond_embed_query = torch.zeros((inputs_embeds.shape[0], total_length), device=inputs_embeds.device,
dtype=inputs_embeds.dtype).long()
inputs_embeds = inputs_embeds + self.cond_embed(cond_embed_query)
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
batch_size, seq_length = inputs_embeds.shape[:2] # seq_length not used since mask_seq_length is not used
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
# required mask seq length can be calculated via length of past
mask_seq_length = past_key_values_length + seq_length # not used since attention mask is input
# embed positions
if self._use_flash_attention_2:
# 2d mask is passed through the layers
assert attention_mask is not None
causal_attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
attention_mask = (
torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
if attention_mask is None
else attention_mask
)
else:
raise ValueError("Only flash_attention_2 is supported in MeshAnything")
pos_embeds = self.embed_positions(attention_mask, past_key_values_length)
hidden_states = inputs_embeds + pos_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
# check if head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask], ["head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_attention_mask,
head_mask[idx] if head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if self.final_layer_norm is not None:
hidden_states = self.final_layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class OPTLoopEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, n_discrete_size: int):
super().__init__(num_embeddings, embedding_dim)
self.state = None
self.loop_state = None
self.n_discrete_size = n_discrete_size + 3 # for padding
def forward(self, attention_mask=None, face_ids = None, input_ids = None, face_per_token = None):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
if face_ids is not None:
return super().forward(face_ids)
assert input_ids.shape[1] == 1, "Only one token is allowed for loop embedding"
assert self.state is not None, "State is not initialized"
# zero as beginning
batch_size = input_ids.shape[0]
face_ids = input_ids.clone().detach()
for cur_batch_index in range(batch_size):
cur_ids = input_ids[cur_batch_index]
idx_in_extra = torch.isin(cur_ids, torch.LongTensor([0, 1, 2]).to(input_ids.device))
if idx_in_extra:
self.state[cur_batch_index] = 9 # init
self.loop_state[cur_batch_index] = 0
else:
if cur_ids == self.n_discrete_size:
face_ids[cur_batch_index] = 3
self.state[cur_batch_index] = 9 # init
self.loop_state[cur_batch_index] = 0
else:
if self.state[cur_batch_index] == 0:
face_ids[cur_batch_index] = 7 + self.loop_state[cur_batch_index] % 3
else:
self.state[cur_batch_index] -= 1
face_ids[cur_batch_index] = 4 + self.loop_state[cur_batch_index] % 3
self.loop_state[cur_batch_index] += 1
return super().forward(face_ids)
def init_state(self, template_tensor):
batch_size = template_tensor.shape[0]
self.state = torch.zeros((batch_size, 1), dtype=torch.long, device=template_tensor.device)
self.state[...] = 9
self.loop_state = torch.zeros((batch_size, 1), dtype=torch.long, device=template_tensor.device)
class OPTFacePositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
super().__init__(num_embeddings, embedding_dim)
def forward(self, attention_mask=None, face_ids = None, input_ids = None, face_per_token = None):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
if face_ids is not None:
return super().forward(face_ids)
assert input_ids.shape[1] == 1
idx_in_extra = torch.isin(input_ids, torch.LongTensor([0, 1, 2]).to(input_ids.device))
cur_ids = input_ids.clone().detach()
cur_index = (attention_mask.sum(dim=1, keepdim=True) - 2) % face_per_token + 3
cur_ids[~idx_in_extra]=cur_index[~idx_in_extra]
return super().forward(cur_ids)
AutoConfig.register("shape_opt", ShapeOPTConfig)
AutoModelForCausalLM.register(ShapeOPTConfig, ShapeOPT)