Yiyuan's picture
Upload 98 files
96a9519 verified
raw
history blame contribute delete
No virus
8.26 kB
import math
import os
from draggan.viz import renderer
import torch
from torch import optim
from torch.nn import functional as F
from torchvision import transforms
from PIL import Image
from tqdm import tqdm
import dataclasses
import draggan.dnnlib as dnnlib
from .lpips import util
def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05):
lr_ramp = min(1, (1 - t) / rampdown)
lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi)
lr_ramp = lr_ramp * min(1, t / rampup)
return initial_lr * lr_ramp
def make_image(tensor):
return (
tensor.detach()
.clamp_(min=-1, max=1)
.add(1)
.div_(2)
.mul(255)
.type(torch.uint8)
.permute(0, 2, 3, 1)
.to("cpu")
.numpy()
)
@dataclasses.dataclass
class InverseConfig:
lr_warmup = 0.05
lr_decay = 0.25
lr = 0.1
noise = 0.05
noise_decay = 0.75
# step = 1000
step = 1000
noise_regularize = 1e5
mse = 0.1
def inverse_image(
g_ema,
image,
percept,
image_size=256,
w_plus = False,
config=InverseConfig(),
device='cuda:0'
):
args = config
n_mean_latent = 10000
resize = min(image_size, 256)
if torch.is_tensor(image)==False:
transform = transforms.Compose(
[
transforms.Resize(resize,),
transforms.CenterCrop(resize),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
img = transform(image)
else:
img = transforms.functional.resize(image,resize)
transform = transforms.Compose(
[
transforms.CenterCrop(resize),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
img = transform(img)
imgs = []
imgs.append(img)
imgs = torch.stack(imgs, 0).to(device)
with torch.no_grad():
#noise_sample = torch.randn(n_mean_latent, 512, device=device)
noise_sample = torch.randn(n_mean_latent, g_ema.z_dim, device=device)
#label = torch.zeros([n_mean_latent,g_ema.c_dim],device = device)
w_samples = g_ema.mapping(noise_sample,None)
w_samples = w_samples[:, :1, :]
w_avg = w_samples.mean(0)
w_std = ((w_samples - w_avg).pow(2).sum() / n_mean_latent) ** 0.5
noises = {name: buf for (name, buf) in g_ema.synthesis.named_buffers() if 'noise_const' in name}
for noise in noises.values():
noise = torch.randn_like(noise)
noise.requires_grad = True
w_opt = w_avg.detach().clone()
if w_plus:
w_opt = w_opt.repeat(1,g_ema.mapping.num_ws, 1)
w_opt.requires_grad = True
#if args.w_plus:
#latent_in = latent_in.unsqueeze(1).repeat(1, g_ema.n_latent, 1)
optimizer = optim.Adam([w_opt] + list(noises.values()), lr=args.lr)
pbar = tqdm(range(args.step))
latent_path = []
for i in pbar:
t = i / args.step
lr = get_lr(t, args.lr)
optimizer.param_groups[0]["lr"] = lr
noise_strength = w_std * args.noise * max(0, 1 - t / args.noise_decay) ** 2
w_noise = torch.randn_like(w_opt) * noise_strength
if w_plus:
ws = w_opt + w_noise
else:
ws = (w_opt + w_noise).repeat([1, g_ema.mapping.num_ws, 1])
img_gen = g_ema.synthesis(ws, noise_mode='const', force_fp32=True)
#latent_n = latent_noise(latent_in, noise_strength.item())
#latent, noise = g_ema.prepare([latent_n], input_is_latent=True, noise=noises)
#img_gen, F = g_ema.generate(latent, noise)
# Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images.
if img_gen.shape[2] > 256:
img_gen = F.interpolate(img_gen, size=(256, 256), mode='area')
p_loss = percept(img_gen,imgs)
# Noise regularization.
reg_loss = 0.0
for v in noises.values():
noise = v[None, None, :, :] # must be [1,1,H,W] for F.avg_pool2d()
while True:
reg_loss += (noise * torch.roll(noise, shifts=1, dims=3)).mean() ** 2
reg_loss += (noise * torch.roll(noise, shifts=1, dims=2)).mean() ** 2
if noise.shape[2] <= 8:
break
noise = F.avg_pool2d(noise, kernel_size=2)
mse_loss = F.mse_loss(img_gen, imgs)
loss = p_loss + args.noise_regularize * reg_loss + args.mse * mse_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Normalize noise.
with torch.no_grad():
for buf in noises.values():
buf -= buf.mean()
buf *= buf.square().mean().rsqrt()
if (i + 1) % 100 == 0:
latent_path.append(w_opt.detach().clone())
pbar.set_description(
(
f"perceptual: {p_loss.item():.4f}; noise regularize: {reg_loss:.4f};"
f" mse: {mse_loss.item():.4f}; lr: {lr:.4f}"
)
)
#latent, noise = g_ema.prepare([latent_path[-1]], input_is_latent=True, noise=noises)
#img_gen, F = g_ema.generate(latent, noise)
if w_plus:
ws = latent_path[-1]
else:
ws = latent_path[-1].repeat([1, g_ema.mapping.num_ws, 1])
img_gen = g_ema.synthesis(ws, noise_mode='const')
result = {
"latent": latent_path[-1],
"sample": img_gen,
"real": imgs,
}
return result
def toogle_grad(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
class PTI:
def __init__(self,G, percept, l2_lambda = 1,max_pti_step = 400, pti_lr = 3e-4 ):
self.g_ema = G
self.l2_lambda = l2_lambda
self.max_pti_step = max_pti_step
self.pti_lr = pti_lr
self.percept = percept
def cacl_loss(self,percept, generated_image,real_image):
mse_loss = F.mse_loss(generated_image, real_image)
p_loss = percept(generated_image, real_image).sum()
loss = p_loss +self.l2_lambda * mse_loss
return loss
def train(self,img,w_plus=False):
if not torch.cuda.is_available():
device = 'cpu'
else:
device = 'cuda'
if torch.is_tensor(img) == False:
transform = transforms.Compose(
[
transforms.Resize(self.g_ema.img_resolution, ),
transforms.CenterCrop(self.g_ema.img_resolution),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
real_img = transform(img).to(device).unsqueeze(0)
else:
img = transforms.functional.resize(img, self.g_ema.img_resolution)
transform = transforms.Compose(
[
transforms.CenterCrop(self.g_ema.img_resolution),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
real_img = transform(img).to(device).unsqueeze(0)
inversed_result = inverse_image(self.g_ema,img,self.percept,self.g_ema.img_resolution,w_plus,device=device)
w_pivot = inversed_result['latent']
if w_plus:
ws = w_pivot
else:
ws = w_pivot.repeat([1, self.g_ema.mapping.num_ws, 1])
toogle_grad(self.g_ema,True)
optimizer = torch.optim.Adam(self.g_ema.parameters(), lr=self.pti_lr)
print('start PTI')
pbar = tqdm(range(self.max_pti_step))
for i in pbar:
t = i / self.max_pti_step
lr = get_lr(t, self.pti_lr)
optimizer.param_groups[0]["lr"] = lr
generated_image = self.g_ema.synthesis(ws,noise_mode='const')
loss = self.cacl_loss(self.percept,generated_image,real_img)
pbar.set_description(
(
f"loss: {loss.item():.4f}"
)
)
optimizer.zero_grad()
loss.backward()
optimizer.step()
with torch.no_grad():
generated_image = self.g_ema.synthesis(ws, noise_mode='const')
return generated_image,ws