File size: 1,505 Bytes
2ea93fe
3453878
ef9cf57
2ea93fe
 
 
 
 
 
 
 
 
 
 
 
 
22707c7
 
 
2ea93fe
ef9cf57
2ea93fe
22707c7
 
 
 
 
2ea93fe
ef9cf57
2ea93fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import gradio as gr 
import pandas as pd
import spaces
from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration

# Load the tokenizer and retriever
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", use_dummy_dataset=True)

# Load the model
model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever)

# Tokenize the contexts and responses
inputs = tokenizer(contexts, return_tensors='pt', padding=True, truncation=True)
labels = tokenizer(responses, return_tensors='pt', padding=True, truncation=True)

# Extract the abstracts
abstracts = df['Abstract'].dropna().tolist()

# Load your dataset
df = pd.read_csv('10kstats.csv')

# Generate context-response pairs (abstract-question pairs)
# Here we use the abstracts as contexts and simulate questions

contexts = abstracts
responses = ["Can you tell me more about this research?" for _ in abstracts]

@spaces.GPU
def generate_response(input_text):
    input_ids = tokenizer([input_text], return_tensors='pt')['input_ids']
    outputs = model.generate(input_ids)
    response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
    return response

# Create the Gradio interface
iface = gr.Interface(
    fn=generate_response,
    inputs="text",
    outputs="text",
    title="RAG Chatbot",
    description="A chatbot powered by Retrieval-Augmented Generation (RAG) model."
)

# Launch the interface
iface.launch()