File size: 25,582 Bytes
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487ee6d
da48dbe
 
 
 
 
 
 
487ee6d
 
 
 
 
4a4217c
da48dbe
 
487ee6d
da48dbe
487ee6d
da48dbe
 
487ee6d
 
c3d3e4a
df6cc56
487ee6d
da48dbe
487ee6d
 
 
da48dbe
 
 
4a4217c
df6cc56
da48dbe
df6cc56
da48dbe
df6cc56
da48dbe
df6cc56
 
 
 
 
 
 
4a4217c
df6cc56
 
4a4217c
 
 
 
 
df6cc56
 
 
 
da48dbe
 
df6cc56
da48dbe
df6cc56
da48dbe
 
fb140f6
df6cc56
fb140f6
da48dbe
 
 
 
fb140f6
 
4a4217c
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
da48dbe
 
 
 
 
df6cc56
fb140f6
 
da48dbe
df6cc56
da48dbe
e5f16e8
66ab6d4
fb140f6
 
4a4217c
 
 
 
 
 
fb140f6
 
 
 
 
 
66ab6d4
fb140f6
da48dbe
 
e5f16e8
da48dbe
 
df6cc56
da48dbe
df6cc56
da48dbe
df6cc56
da48dbe
df6cc56
 
 
 
 
da48dbe
df6cc56
da48dbe
df6cc56
 
 
 
 
 
 
 
da48dbe
df6cc56
da48dbe
df6cc56
 
 
 
da48dbe
df6cc56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da48dbe
df6cc56
 
da48dbe
df6cc56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da48dbe
 
df6cc56
 
 
 
 
da48dbe
df6cc56
 
 
da48dbe
df6cc56
e5f16e8
df6cc56
da48dbe
df6cc56
fb140f6
df6cc56
da48dbe
df6cc56
 
 
da48dbe
df6cc56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da48dbe
 
fb140f6
df6cc56
 
fb140f6
da48dbe
df6cc56
 
da48dbe
fb140f6
da48dbe
df6cc56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f16e8
df6cc56
 
 
da48dbe
df6cc56
 
da48dbe
df6cc56
da48dbe
df6cc56
 
 
 
 
 
 
 
da48dbe
df6cc56
 
da48dbe
df6cc56
 
 
 
da48dbe
df6cc56
da48dbe
df6cc56
da48dbe
df6cc56
 
 
 
 
 
da48dbe
df6cc56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cf0096
df6cc56
8cf0096
df6cc56
 
 
 
 
8cf0096
df6cc56
da48dbe
df6cc56
 
da48dbe
df6cc56
da48dbe
df6cc56
 
 
da48dbe
df6cc56
 
 
da48dbe
df6cc56
da48dbe
df6cc56
 
 
 
da48dbe
df6cc56
da48dbe
df6cc56
da48dbe
df6cc56
 
 
 
da48dbe
df6cc56
 
 
 
 
 
fb140f6
da48dbe
df6cc56
 
 
 
 
 
 
 
da48dbe
df6cc56
da48dbe
df6cc56
 
da48dbe
df6cc56
 
da48dbe
df6cc56
da48dbe
df6cc56
da48dbe
df6cc56
 
 
 
 
 
 
 
fb140f6
da48dbe
df6cc56
 
 
 
 
 
 
 
 
 
 
da48dbe
df6cc56
 
da48dbe
df6cc56
 
da48dbe
df6cc56
 
 
 
 
 
 
 
da48dbe
df6cc56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da48dbe
df6cc56
da48dbe
df6cc56
 
 
 
 
 
 
 
fb140f6
e5f16e8
df6cc56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da48dbe
df6cc56
da48dbe
df6cc56
 
 
 
da48dbe
df6cc56
da48dbe
df6cc56
 
 
da48dbe
df6cc56
 
 
 
 
 
 
 
e5f16e8
df6cc56
 
 
da48dbe
df6cc56
da48dbe
df6cc56
 
 
 
 
 
fb140f6
df6cc56
 
 
da48dbe
df6cc56
da48dbe
df6cc56
 
da48dbe
df6cc56
8cf0096
df6cc56
 
8cf0096
df6cc56
 
 
e5f16e8
df6cc56
 
 
 
da48dbe
df6cc56
 
 
 
 
 
da48dbe
4a4217c
 
 
 
8cf0096
4a4217c
 
 
df6cc56
4a4217c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

import logging
import warnings

warnings.filterwarnings("ignore")
logging.getLogger("lightning").setLevel(logging.ERROR)
logging.getLogger("trimesh").setLevel(logging.ERROR)

import os

import numpy as np
import torch
import torchvision
import trimesh
from pytorch3d.ops import SubdivideMeshes
from huggingface_hub import hf_hub_download
from termcolor import colored
from tqdm.auto import tqdm

from apps.IFGeo import IFGeo
from apps.Normal import Normal
from lib.common.BNI import BNI
from lib.common.BNI_utils import save_normal_tensor
from lib.common.config import cfg
from lib.common.imutils import blend_rgb_norm
from lib.common.local_affine import register
from lib.common.render import query_color, Render
from lib.common.train_util import Format, init_loss
from lib.common.voxelize import VoxelGrid
from lib.dataset.mesh_util import *
from lib.dataset.TestDataset import TestDataset
from lib.net.geometry import rot6d_to_rotmat, rotation_matrix_to_angle_axis

torch.backends.cudnn.benchmark = True


def generate_video(vis_tensor_path):

    in_tensor = torch.load(vis_tensor_path)

    render = Render(size=512, device=torch.device("cuda:0"))

    # visualize the final results in self-rotation mode
    verts_lst = in_tensor["body_verts"] + in_tensor["BNI_verts"]
    faces_lst = in_tensor["body_faces"] + in_tensor["BNI_faces"]

    # self-rotated video
    tmp_path = vis_tensor_path.replace("_in_tensor.pt", "_tmp.mp4")
    out_path = vis_tensor_path.replace("_in_tensor.pt", ".mp4")

    render.load_meshes(verts_lst, faces_lst)
    render.get_rendered_video_multi(in_tensor, tmp_path)

    os.system(f"ffmpeg -y -loglevel quiet -stats -i {tmp_path} -vcodec libx264 {out_path}")

    return out_path


def generate_model(in_path, fitting_step=50):

    out_dir = "./results"

    # cfg read and merge
    cfg.merge_from_file("./configs/econ.yaml")
    cfg.merge_from_file("./lib/pymafx/configs/pymafx_config.yaml")
    device = torch.device(f"cuda:0")

    # setting for testing on in-the-wild images
    cfg_show_list = [
        "test_gpus", [0], "mcube_res", 512, "clean_mesh", True, "test_mode", True, "batch_size", 1
    ]

    cfg.merge_from_list(cfg_show_list)
    cfg.freeze()

    # load normal model
    normal_net = Normal.load_from_checkpoint(
        cfg=cfg,
        checkpoint_path=hf_hub_download(
            repo_id="Yuliang/ICON", use_auth_token=os.environ["ICON"], filename=cfg.normal_path
        ),
        map_location=device,
        strict=False
    )
    normal_net = normal_net.to(device)
    normal_net.netG.eval()
    print(
        colored(
            f"Resume Normal Estimator from {Format.start} {cfg.normal_path} {Format.end}", "green"
        )
    )

    # SMPLX object
    SMPLX_object = SMPLX()

    dataset_param = {
        "image_path": in_path,
        "use_seg": True,    # w/ or w/o segmentation
        "hps_type": cfg.bni.hps_type,    # pymafx/pixie
        "vol_res": cfg.vol_res,
        "single": True,
    }

    if cfg.bni.use_ifnet:
        # load IFGeo model
        ifnet = IFGeo.load_from_checkpoint(
            cfg=cfg,
            checkpoint_path=hf_hub_download(
                repo_id="Yuliang/ICON", use_auth_token=os.environ["ICON"], filename=cfg.ifnet_path
            ),
            map_location=device,
            strict=False
        )
        ifnet = ifnet.to(device)
        ifnet.netG.eval()

        print(colored(f"Resume IF-Net+ from {Format.start} {cfg.ifnet_path} {Format.end}", "green"))
        print(colored(f"Complete with {Format.start} IF-Nets+ (Implicit) {Format.end}", "green"))
    else:
        print(colored(f"Complete with {Format.start} SMPL-X (Explicit) {Format.end}", "green"))

    dataset = TestDataset(dataset_param, device)

    print(colored(f"Dataset Size: {len(dataset)}", "green"))

    data = dataset[0]

    losses = init_loss()

    print(f"{data['name']}")

    # final results rendered as image (PNG)
    # 1. Render the final fitted SMPL (xxx_smpl.png)
    # 2. Render the final reconstructed clothed human (xxx_cloth.png)
    # 3. Blend the original image with predicted cloth normal (xxx_overlap.png)
    # 4. Blend the cropped image with predicted cloth normal (xxx_crop.png)

    os.makedirs(osp.join(out_dir, cfg.name, "png"), exist_ok=True)

    # final reconstruction meshes (OBJ)
    # 1. SMPL mesh (xxx_smpl_xx.obj)
    # 2. SMPL params (xxx_smpl.npy)
    # 3. d-BiNI surfaces (xxx_BNI.obj)
    # 4. seperate face/hand mesh (xxx_hand/face.obj)
    # 5. full shape impainted by IF-Nets+ after remeshing (xxx_IF.obj)
    # 6. sideded or occluded parts (xxx_side.obj)
    # 7. final reconstructed clothed human (xxx_full.obj)

    os.makedirs(osp.join(out_dir, cfg.name, "obj"), exist_ok=True)

    in_tensor = {
        "smpl_faces": data["smpl_faces"], "image": data["img_icon"].to(device), "mask":
        data["img_mask"].to(device)
    }

    # The optimizer and variables
    optimed_pose = data["body_pose"].requires_grad_(True)
    optimed_trans = data["trans"].requires_grad_(True)
    optimed_betas = data["betas"].requires_grad_(True)
    optimed_orient = data["global_orient"].requires_grad_(True)

    optimizer_smpl = torch.optim.Adam([optimed_pose, optimed_trans, optimed_betas, optimed_orient],
                                      lr=1e-2,
                                      amsgrad=True)
    scheduler_smpl = torch.optim.lr_scheduler.ReduceLROnPlateau(
        optimizer_smpl,
        mode="min",
        factor=0.5,
        verbose=0,
        min_lr=1e-5,
        patience=5,
    )

    # [result_loop_1, result_loop_2, ...]
    per_data_lst = []

    N_body, N_pose = optimed_pose.shape[:2]

    smpl_path = f"{out_dir}/{cfg.name}/obj/{data['name']}_smpl_00.obj"

    # remove this line if you change the loop_smpl and obtain different SMPL-X fits
    if osp.exists(smpl_path):

        smpl_verts_lst = []
        smpl_faces_lst = []

        for idx in range(N_body):

            smpl_obj = f"{out_dir}/{cfg.name}/obj/{data['name']}_smpl_{idx:02d}.obj"
            smpl_mesh = trimesh.load(smpl_obj)
            smpl_verts = torch.tensor(smpl_mesh.vertices).to(device).float()
            smpl_faces = torch.tensor(smpl_mesh.faces).to(device).long()
            smpl_verts_lst.append(smpl_verts)
            smpl_faces_lst.append(smpl_faces)

        batch_smpl_verts = torch.stack(smpl_verts_lst)
        batch_smpl_faces = torch.stack(smpl_faces_lst)

        # render optimized mesh as normal [-1,1]
        in_tensor["T_normal_F"], in_tensor["T_normal_B"] = dataset.render_normal(
            batch_smpl_verts, batch_smpl_faces
        )

        with torch.no_grad():
            in_tensor["normal_F"], in_tensor["normal_B"] = normal_net.netG(in_tensor)

        in_tensor["smpl_verts"] = batch_smpl_verts * torch.tensor([1., -1., 1.]).to(device)
        in_tensor["smpl_faces"] = batch_smpl_faces[:, :, [0, 2, 1]]

    else:
        # smpl optimization
        loop_smpl = tqdm(range(fitting_step))

        for i in loop_smpl:

            per_loop_lst = []

            optimizer_smpl.zero_grad()

            N_body, N_pose = optimed_pose.shape[:2]

            # 6d_rot to rot_mat
            optimed_orient_mat = rot6d_to_rotmat(optimed_orient.view(-1, 6)).view(N_body, 1, 3, 3)
            optimed_pose_mat = rot6d_to_rotmat(optimed_pose.view(-1, 6)).view(N_body, N_pose, 3, 3)

            smpl_verts, smpl_landmarks, smpl_joints = dataset.smpl_model(
                shape_params=optimed_betas,
                expression_params=tensor2variable(data["exp"], device),
                body_pose=optimed_pose_mat,
                global_pose=optimed_orient_mat,
                jaw_pose=tensor2variable(data["jaw_pose"], device),
                left_hand_pose=tensor2variable(data["left_hand_pose"], device),
                right_hand_pose=tensor2variable(data["right_hand_pose"], device),
            )

            smpl_verts = (smpl_verts + optimed_trans) * data["scale"]
            smpl_joints = (smpl_joints + optimed_trans) * data["scale"] * torch.tensor([
                1.0, 1.0, -1.0
            ]).to(device)

            # landmark errors
            smpl_joints_3d = (
                smpl_joints[:, dataset.smpl_data.smpl_joint_ids_45_pixie, :] + 1.0
            ) * 0.5
            in_tensor["smpl_joint"] = smpl_joints[:, dataset.smpl_data.smpl_joint_ids_24_pixie, :]

            ghum_lmks = data["landmark"][:, SMPLX_object.ghum_smpl_pairs[:, 0], :2].to(device)
            ghum_conf = data["landmark"][:, SMPLX_object.ghum_smpl_pairs[:, 0], -1].to(device)
            smpl_lmks = smpl_joints_3d[:, SMPLX_object.ghum_smpl_pairs[:, 1], :2]

            # render optimized mesh as normal [-1,1]
            in_tensor["T_normal_F"], in_tensor["T_normal_B"] = dataset.render_normal(
                smpl_verts * torch.tensor([1.0, -1.0, -1.0]).to(device),
                in_tensor["smpl_faces"],
            )

            T_mask_F, T_mask_B = dataset.render.get_image(type="mask")

            with torch.no_grad():
                in_tensor["normal_F"], in_tensor["normal_B"] = normal_net.netG(in_tensor)

            diff_F_smpl = torch.abs(in_tensor["T_normal_F"] - in_tensor["normal_F"])
            diff_B_smpl = torch.abs(in_tensor["T_normal_B"] - in_tensor["normal_B"])

            # silhouette loss
            smpl_arr = torch.cat([T_mask_F, T_mask_B], dim=-1)
            gt_arr = in_tensor["mask"].repeat(1, 1, 2)
            diff_S = torch.abs(smpl_arr - gt_arr)
            losses["silhouette"]["value"] = diff_S.mean()

            # large cloth_overlap --> big difference between body and cloth mask
            # for loose clothing, reply more on landmarks instead of silhouette+normal loss
            cloth_overlap = diff_S.sum(dim=[1, 2]) / gt_arr.sum(dim=[1, 2])
            cloth_overlap_flag = cloth_overlap > cfg.cloth_overlap_thres
            losses["joint"]["weight"] = [50.0 if flag else 5.0 for flag in cloth_overlap_flag]

            # small body_overlap --> large occlusion or out-of-frame
            # for highly occluded body, reply only on high-confidence landmarks, no silhouette+normal loss

            # BUG: PyTorch3D silhouette renderer generates dilated mask
            bg_value = in_tensor["T_normal_F"][0, 0, 0, 0]
            smpl_arr_fake = torch.cat([
                in_tensor["T_normal_F"][:, 0].ne(bg_value).float(),
                in_tensor["T_normal_B"][:, 0].ne(bg_value).float()
            ],
                                      dim=-1)

            body_overlap = (gt_arr * smpl_arr_fake.gt(0.0)
                           ).sum(dim=[1, 2]) / smpl_arr_fake.gt(0.0).sum(dim=[1, 2])
            body_overlap_mask = (gt_arr * smpl_arr_fake).unsqueeze(1)
            body_overlap_flag = body_overlap < cfg.body_overlap_thres

            losses["normal"]["value"] = (
                diff_F_smpl * body_overlap_mask[..., :512] +
                diff_B_smpl * body_overlap_mask[..., 512:]
            ).mean() / 2.0

            losses["silhouette"]["weight"] = [0 if flag else 1.0 for flag in body_overlap_flag]
            occluded_idx = torch.where(body_overlap_flag)[0]
            ghum_conf[occluded_idx] *= ghum_conf[occluded_idx] > 0.95
            losses["joint"]["value"] = (torch.norm(ghum_lmks - smpl_lmks, dim=2) *
                                        ghum_conf).mean(dim=1)

            # Weighted sum of the losses
            smpl_loss = 0.0
            pbar_desc = "Body Fitting -- "
            for k in ["normal", "silhouette", "joint"]:
                per_loop_loss = (losses[k]["value"] *
                                 torch.tensor(losses[k]["weight"]).to(device)).mean()
                pbar_desc += f"{k}: {per_loop_loss:.3f} | "
                smpl_loss += per_loop_loss
            pbar_desc += f"Total: {smpl_loss:.3f}"
            loose_str = ''.join([str(j) for j in cloth_overlap_flag.int().tolist()])
            occlude_str = ''.join([str(j) for j in body_overlap_flag.int().tolist()])
            pbar_desc += colored(f"| loose:{loose_str}, occluded:{occlude_str}", "yellow")
            loop_smpl.set_description(pbar_desc)

            # save intermediate results
            if (i == fitting_step - 1):

                per_loop_lst.extend([
                    in_tensor["image"],
                    in_tensor["T_normal_F"],
                    in_tensor["normal_F"],
                    diff_S[:, :, :512].unsqueeze(1).repeat(1, 3, 1, 1),
                ])
                per_loop_lst.extend([
                    in_tensor["image"],
                    in_tensor["T_normal_B"],
                    in_tensor["normal_B"],
                    diff_S[:, :, 512:].unsqueeze(1).repeat(1, 3, 1, 1),
                ])
                per_data_lst.append(
                    get_optim_grid_image(per_loop_lst, None, nrow=N_body * 2, type="smpl")
                )

            smpl_loss.backward()
            optimizer_smpl.step()
            scheduler_smpl.step(smpl_loss)

        in_tensor["smpl_verts"] = smpl_verts * torch.tensor([1.0, 1.0, -1.0]).to(device)
        in_tensor["smpl_faces"] = in_tensor["smpl_faces"][:, :, [0, 2, 1]]

        per_data_lst[-1].save(osp.join(out_dir, cfg.name, f"png/{data['name']}_smpl.png"))

    img_crop_path = osp.join(out_dir, cfg.name, "png", f"{data['name']}_crop.png")
    torchvision.utils.save_image(
        torch.cat([
            data["img_crop"][:, :3], (in_tensor['normal_F'].detach().cpu() + 1.0) * 0.5,
            (in_tensor['normal_B'].detach().cpu() + 1.0) * 0.5
        ],
                  dim=3), img_crop_path
    )

    rgb_norm_F = blend_rgb_norm(in_tensor["normal_F"], data)
    rgb_norm_B = blend_rgb_norm(in_tensor["normal_B"], data)

    img_overlap_path = osp.join(out_dir, cfg.name, f"png/{data['name']}_overlap.png")
    torchvision.utils.save_image(
        torch.cat([data["img_raw"], rgb_norm_F, rgb_norm_B], dim=-1) / 255., img_overlap_path
    )

    smpl_obj_lst = []

    for idx in range(N_body):

        smpl_obj = trimesh.Trimesh(
            in_tensor["smpl_verts"].detach().cpu()[idx] * torch.tensor([1.0, -1.0, 1.0]),
            in_tensor["smpl_faces"].detach().cpu()[0][:, [0, 2, 1]],
            process=False,
            maintains_order=True,
        )

        smpl_obj_path = f"{out_dir}/{cfg.name}/obj/{data['name']}_smpl_{idx:02d}.obj"

        if not osp.exists(smpl_obj_path):
            smpl_obj.export(smpl_obj_path)
            smpl_obj.export(smpl_obj_path.replace(".obj", ".glb"))
            smpl_info = {
                "betas":
                optimed_betas[idx].detach().cpu().unsqueeze(0),
                "body_pose":
                rotation_matrix_to_angle_axis(optimed_pose_mat[idx].detach()).cpu().unsqueeze(0),
                "global_orient":
                rotation_matrix_to_angle_axis(optimed_orient_mat[idx].detach()).cpu().unsqueeze(0),
                "transl":
                optimed_trans[idx].detach().cpu(),
                "expression":
                data["exp"][idx].cpu().unsqueeze(0),
                "jaw_pose":
                rotation_matrix_to_angle_axis(data["jaw_pose"][idx]).cpu().unsqueeze(0),
                "left_hand_pose":
                rotation_matrix_to_angle_axis(data["left_hand_pose"][idx]).cpu().unsqueeze(0),
                "right_hand_pose":
                rotation_matrix_to_angle_axis(data["right_hand_pose"][idx]).cpu().unsqueeze(0),
                "scale":
                data["scale"][idx].cpu(),
            }
            np.save(
                smpl_obj_path.replace(".obj", ".npy"),
                smpl_info,
                allow_pickle=True,
            )
        smpl_obj_lst.append(smpl_obj)

    del optimizer_smpl
    del optimed_betas
    del optimed_orient
    del optimed_pose
    del optimed_trans

    torch.cuda.empty_cache()

    # ------------------------------------------------------------------------------------------------------------------
    # clothing refinement

    per_data_lst = []

    batch_smpl_verts = in_tensor["smpl_verts"].detach() * torch.tensor([1.0, -1.0, 1.0],
                                                                       device=device)
    batch_smpl_faces = in_tensor["smpl_faces"].detach()[:, :, [0, 2, 1]]

    in_tensor["depth_F"], in_tensor["depth_B"] = dataset.render_depth(
        batch_smpl_verts, batch_smpl_faces
    )

    per_loop_lst = []

    in_tensor["BNI_verts"] = []
    in_tensor["BNI_faces"] = []
    in_tensor["body_verts"] = []
    in_tensor["body_faces"] = []

    for idx in range(N_body):

        final_path = f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_full.obj"

        side_mesh = smpl_obj_lst[idx].copy()
        face_mesh = smpl_obj_lst[idx].copy()
        hand_mesh = smpl_obj_lst[idx].copy()
        smplx_mesh = smpl_obj_lst[idx].copy()

        # save normals, depths and masks
        BNI_dict = save_normal_tensor(
            in_tensor,
            idx,
            osp.join(out_dir, cfg.name, f"BNI/{data['name']}_{idx}"),
            cfg.bni.thickness,
        )

        # BNI process
        BNI_object = BNI(
            dir_path=osp.join(out_dir, cfg.name, "BNI"),
            name=data["name"],
            BNI_dict=BNI_dict,
            cfg=cfg.bni,
            device=device
        )

        BNI_object.extract_surface(False)

        in_tensor["body_verts"].append(torch.tensor(smpl_obj_lst[idx].vertices).float())
        in_tensor["body_faces"].append(torch.tensor(smpl_obj_lst[idx].faces).long())

        # requires shape completion when low overlap
        # replace SMPL by completed mesh as side_mesh

        if cfg.bni.use_ifnet:

            side_mesh_path = f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_IF.obj"

            side_mesh = apply_face_mask(side_mesh, ~SMPLX_object.smplx_eyeball_fid_mask)

            # mesh completion via IF-net
            in_tensor.update(
                dataset.depth_to_voxel({
                    "depth_F": BNI_object.F_depth.unsqueeze(0), "depth_B":
                    BNI_object.B_depth.unsqueeze(0)
                })
            )

            occupancies = VoxelGrid.from_mesh(side_mesh, cfg.vol_res, loc=[
                0,
            ] * 3, scale=2.0).data.transpose(2, 1, 0)
            occupancies = np.flip(occupancies, axis=1)

            in_tensor["body_voxels"] = torch.tensor(occupancies.copy()
                                                   ).float().unsqueeze(0).to(device)

            with torch.no_grad():
                sdf = ifnet.reconEngine(netG=ifnet.netG, batch=in_tensor)
                verts_IF, faces_IF = ifnet.reconEngine.export_mesh(sdf)

            if ifnet.clean_mesh_flag:
                verts_IF, faces_IF = clean_mesh(verts_IF, faces_IF)

            side_mesh = trimesh.Trimesh(verts_IF, faces_IF)
            side_mesh = remesh_laplacian(side_mesh, side_mesh_path)

        else:
            side_mesh = apply_vertex_mask(
                side_mesh,
                (
                    SMPLX_object.front_flame_vertex_mask + SMPLX_object.smplx_mano_vertex_mask +
                    SMPLX_object.eyeball_vertex_mask
                ).eq(0).float(),
            )

            #register side_mesh to BNI surfaces
            side_mesh = Meshes(
                verts=[torch.tensor(side_mesh.vertices).float()],
                faces=[torch.tensor(side_mesh.faces).long()],
            ).to(device)
            sm = SubdivideMeshes(side_mesh)
            side_mesh = register(BNI_object.F_B_trimesh, sm(side_mesh), device)

        side_verts = torch.tensor(side_mesh.vertices).float().to(device)
        side_faces = torch.tensor(side_mesh.faces).long().to(device)

        # Possion Fusion between SMPLX and BNI
        # 1. keep the faces invisible to front+back cameras
        # 2. keep the front-FLAME+MANO faces
        # 3. remove eyeball faces

        # export intermediate meshes
        BNI_object.F_B_trimesh.export(f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_BNI.obj")
        full_lst = []

        if "face" in cfg.bni.use_smpl:

            # only face
            face_mesh = apply_vertex_mask(face_mesh, SMPLX_object.front_flame_vertex_mask)
            face_mesh.vertices = face_mesh.vertices - np.array([0, 0, cfg.bni.thickness])

            # remove face neighbor triangles
            BNI_object.F_B_trimesh = part_removal(
                BNI_object.F_B_trimesh,
                face_mesh,
                cfg.bni.face_thres,
                device,
                smplx_mesh,
                region="face"
            )
            side_mesh = part_removal(
                side_mesh, face_mesh, cfg.bni.face_thres, device, smplx_mesh, region="face"
            )
            face_mesh.export(f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_face.obj")
            full_lst += [face_mesh]

        if "hand" in cfg.bni.use_smpl and (True in data['hands_visibility'][idx]):

            hand_mask = torch.zeros(SMPLX_object.smplx_verts.shape[0], )
            if data['hands_visibility'][idx][0]:
                hand_mask.index_fill_(
                    0, torch.tensor(SMPLX_object.smplx_mano_vid_dict["left_hand"]), 1.0
                )
            if data['hands_visibility'][idx][1]:
                hand_mask.index_fill_(
                    0, torch.tensor(SMPLX_object.smplx_mano_vid_dict["right_hand"]), 1.0
                )

            # only hands
            hand_mesh = apply_vertex_mask(hand_mesh, hand_mask)

            # remove hand neighbor triangles
            BNI_object.F_B_trimesh = part_removal(
                BNI_object.F_B_trimesh,
                hand_mesh,
                cfg.bni.hand_thres,
                device,
                smplx_mesh,
                region="hand"
            )
            side_mesh = part_removal(
                side_mesh, hand_mesh, cfg.bni.hand_thres, device, smplx_mesh, region="hand"
            )
            hand_mesh.export(f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_hand.obj")
            full_lst += [hand_mesh]

        full_lst += [BNI_object.F_B_trimesh]

        # initial side_mesh could be SMPLX or IF-net
        side_mesh = part_removal(
            side_mesh, sum(full_lst), 2e-2, device, smplx_mesh, region="", clean=False
        )

        full_lst += [side_mesh]

        # # export intermediate meshes
        BNI_object.F_B_trimesh.export(f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_BNI.obj")
        side_mesh.export(f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_side.obj")

        final_mesh = poisson(
            sum(full_lst),
            final_path,
            cfg.bni.poisson_depth,
        )
        print(
            colored(f"\n Poisson completion to {Format.start} {final_path} {Format.end}", "yellow")
        )

        dataset.render.load_meshes(final_mesh.vertices, final_mesh.faces)
        rotate_recon_lst = dataset.render.get_image(cam_type="four")
        per_loop_lst.extend([in_tensor['image'][idx:idx + 1]] + rotate_recon_lst)

        if cfg.bni.texture_src == 'image':

            # coloring the final mesh (front: RGB pixels, back: normal colors)
            final_colors = query_color(
                torch.tensor(final_mesh.vertices).float(),
                torch.tensor(final_mesh.faces).long(),
                in_tensor["image"][idx:idx + 1],
                device=device,
            )
            final_mesh.visual.vertex_colors = final_colors
            final_mesh.export(final_path)
            final_mesh.export(final_path.replace(".obj", ".glb"))

        elif cfg.bni.texture_src == 'SD':

            # !TODO: add texture from Stable Diffusion
            pass

    if len(per_loop_lst) > 0:

        per_data_lst.append(get_optim_grid_image(per_loop_lst, None, nrow=5, type="cloth"))
        per_data_lst[-1].save(osp.join(out_dir, cfg.name, f"png/{data['name']}_cloth.png"))

        # for video rendering
        in_tensor["BNI_verts"].append(torch.tensor(final_mesh.vertices).float())
        in_tensor["BNI_faces"].append(torch.tensor(final_mesh.faces).long())

        os.makedirs(osp.join(out_dir, cfg.name, "vid"), exist_ok=True)
        in_tensor["uncrop_param"] = data["uncrop_param"]
        in_tensor["img_raw"] = data["img_raw"]
        torch.save(in_tensor, osp.join(out_dir, cfg.name, f"vid/{data['name']}_in_tensor.pt"))

    smpl_glb_path = smpl_obj_path.replace(".obj", ".glb")
    # smpl_npy_path = smpl_obj_path.replace(".obj", ".npy")
    refine_obj_path = final_path
    refine_glb_path = final_path.replace(".obj", ".glb")
    overlap_path = img_overlap_path
    vis_tensor_path = osp.join(out_dir, cfg.name, f"vid/{data['name']}_in_tensor.pt")

    # # clean all the variables
    # for element in dir():
    #     if 'path' not in element:
    #         del locals()[element]

    # import gc
    # gc.collect()
    # torch.cuda.empty_cache()

    return [smpl_glb_path, refine_glb_path, refine_obj_path, overlap_path, vis_tensor_path]