Spaces:
Runtime error
Runtime error
File size: 25,582 Bytes
da48dbe 487ee6d da48dbe 487ee6d 4a4217c da48dbe 487ee6d da48dbe 487ee6d da48dbe 487ee6d c3d3e4a df6cc56 487ee6d da48dbe 487ee6d da48dbe 4a4217c df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 4a4217c df6cc56 4a4217c df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe fb140f6 df6cc56 fb140f6 da48dbe fb140f6 4a4217c fb140f6 da48dbe df6cc56 fb140f6 da48dbe df6cc56 da48dbe e5f16e8 66ab6d4 fb140f6 4a4217c fb140f6 66ab6d4 fb140f6 da48dbe e5f16e8 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 e5f16e8 df6cc56 da48dbe df6cc56 fb140f6 df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe fb140f6 df6cc56 fb140f6 da48dbe df6cc56 da48dbe fb140f6 da48dbe df6cc56 e5f16e8 df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 8cf0096 df6cc56 8cf0096 df6cc56 8cf0096 df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 fb140f6 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 fb140f6 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 fb140f6 e5f16e8 df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 e5f16e8 df6cc56 da48dbe df6cc56 da48dbe df6cc56 fb140f6 df6cc56 da48dbe df6cc56 da48dbe df6cc56 da48dbe df6cc56 8cf0096 df6cc56 8cf0096 df6cc56 e5f16e8 df6cc56 da48dbe df6cc56 da48dbe 4a4217c 8cf0096 4a4217c df6cc56 4a4217c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
import logging
import warnings
warnings.filterwarnings("ignore")
logging.getLogger("lightning").setLevel(logging.ERROR)
logging.getLogger("trimesh").setLevel(logging.ERROR)
import os
import numpy as np
import torch
import torchvision
import trimesh
from pytorch3d.ops import SubdivideMeshes
from huggingface_hub import hf_hub_download
from termcolor import colored
from tqdm.auto import tqdm
from apps.IFGeo import IFGeo
from apps.Normal import Normal
from lib.common.BNI import BNI
from lib.common.BNI_utils import save_normal_tensor
from lib.common.config import cfg
from lib.common.imutils import blend_rgb_norm
from lib.common.local_affine import register
from lib.common.render import query_color, Render
from lib.common.train_util import Format, init_loss
from lib.common.voxelize import VoxelGrid
from lib.dataset.mesh_util import *
from lib.dataset.TestDataset import TestDataset
from lib.net.geometry import rot6d_to_rotmat, rotation_matrix_to_angle_axis
torch.backends.cudnn.benchmark = True
def generate_video(vis_tensor_path):
in_tensor = torch.load(vis_tensor_path)
render = Render(size=512, device=torch.device("cuda:0"))
# visualize the final results in self-rotation mode
verts_lst = in_tensor["body_verts"] + in_tensor["BNI_verts"]
faces_lst = in_tensor["body_faces"] + in_tensor["BNI_faces"]
# self-rotated video
tmp_path = vis_tensor_path.replace("_in_tensor.pt", "_tmp.mp4")
out_path = vis_tensor_path.replace("_in_tensor.pt", ".mp4")
render.load_meshes(verts_lst, faces_lst)
render.get_rendered_video_multi(in_tensor, tmp_path)
os.system(f"ffmpeg -y -loglevel quiet -stats -i {tmp_path} -vcodec libx264 {out_path}")
return out_path
def generate_model(in_path, fitting_step=50):
out_dir = "./results"
# cfg read and merge
cfg.merge_from_file("./configs/econ.yaml")
cfg.merge_from_file("./lib/pymafx/configs/pymafx_config.yaml")
device = torch.device(f"cuda:0")
# setting for testing on in-the-wild images
cfg_show_list = [
"test_gpus", [0], "mcube_res", 512, "clean_mesh", True, "test_mode", True, "batch_size", 1
]
cfg.merge_from_list(cfg_show_list)
cfg.freeze()
# load normal model
normal_net = Normal.load_from_checkpoint(
cfg=cfg,
checkpoint_path=hf_hub_download(
repo_id="Yuliang/ICON", use_auth_token=os.environ["ICON"], filename=cfg.normal_path
),
map_location=device,
strict=False
)
normal_net = normal_net.to(device)
normal_net.netG.eval()
print(
colored(
f"Resume Normal Estimator from {Format.start} {cfg.normal_path} {Format.end}", "green"
)
)
# SMPLX object
SMPLX_object = SMPLX()
dataset_param = {
"image_path": in_path,
"use_seg": True, # w/ or w/o segmentation
"hps_type": cfg.bni.hps_type, # pymafx/pixie
"vol_res": cfg.vol_res,
"single": True,
}
if cfg.bni.use_ifnet:
# load IFGeo model
ifnet = IFGeo.load_from_checkpoint(
cfg=cfg,
checkpoint_path=hf_hub_download(
repo_id="Yuliang/ICON", use_auth_token=os.environ["ICON"], filename=cfg.ifnet_path
),
map_location=device,
strict=False
)
ifnet = ifnet.to(device)
ifnet.netG.eval()
print(colored(f"Resume IF-Net+ from {Format.start} {cfg.ifnet_path} {Format.end}", "green"))
print(colored(f"Complete with {Format.start} IF-Nets+ (Implicit) {Format.end}", "green"))
else:
print(colored(f"Complete with {Format.start} SMPL-X (Explicit) {Format.end}", "green"))
dataset = TestDataset(dataset_param, device)
print(colored(f"Dataset Size: {len(dataset)}", "green"))
data = dataset[0]
losses = init_loss()
print(f"{data['name']}")
# final results rendered as image (PNG)
# 1. Render the final fitted SMPL (xxx_smpl.png)
# 2. Render the final reconstructed clothed human (xxx_cloth.png)
# 3. Blend the original image with predicted cloth normal (xxx_overlap.png)
# 4. Blend the cropped image with predicted cloth normal (xxx_crop.png)
os.makedirs(osp.join(out_dir, cfg.name, "png"), exist_ok=True)
# final reconstruction meshes (OBJ)
# 1. SMPL mesh (xxx_smpl_xx.obj)
# 2. SMPL params (xxx_smpl.npy)
# 3. d-BiNI surfaces (xxx_BNI.obj)
# 4. seperate face/hand mesh (xxx_hand/face.obj)
# 5. full shape impainted by IF-Nets+ after remeshing (xxx_IF.obj)
# 6. sideded or occluded parts (xxx_side.obj)
# 7. final reconstructed clothed human (xxx_full.obj)
os.makedirs(osp.join(out_dir, cfg.name, "obj"), exist_ok=True)
in_tensor = {
"smpl_faces": data["smpl_faces"], "image": data["img_icon"].to(device), "mask":
data["img_mask"].to(device)
}
# The optimizer and variables
optimed_pose = data["body_pose"].requires_grad_(True)
optimed_trans = data["trans"].requires_grad_(True)
optimed_betas = data["betas"].requires_grad_(True)
optimed_orient = data["global_orient"].requires_grad_(True)
optimizer_smpl = torch.optim.Adam([optimed_pose, optimed_trans, optimed_betas, optimed_orient],
lr=1e-2,
amsgrad=True)
scheduler_smpl = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer_smpl,
mode="min",
factor=0.5,
verbose=0,
min_lr=1e-5,
patience=5,
)
# [result_loop_1, result_loop_2, ...]
per_data_lst = []
N_body, N_pose = optimed_pose.shape[:2]
smpl_path = f"{out_dir}/{cfg.name}/obj/{data['name']}_smpl_00.obj"
# remove this line if you change the loop_smpl and obtain different SMPL-X fits
if osp.exists(smpl_path):
smpl_verts_lst = []
smpl_faces_lst = []
for idx in range(N_body):
smpl_obj = f"{out_dir}/{cfg.name}/obj/{data['name']}_smpl_{idx:02d}.obj"
smpl_mesh = trimesh.load(smpl_obj)
smpl_verts = torch.tensor(smpl_mesh.vertices).to(device).float()
smpl_faces = torch.tensor(smpl_mesh.faces).to(device).long()
smpl_verts_lst.append(smpl_verts)
smpl_faces_lst.append(smpl_faces)
batch_smpl_verts = torch.stack(smpl_verts_lst)
batch_smpl_faces = torch.stack(smpl_faces_lst)
# render optimized mesh as normal [-1,1]
in_tensor["T_normal_F"], in_tensor["T_normal_B"] = dataset.render_normal(
batch_smpl_verts, batch_smpl_faces
)
with torch.no_grad():
in_tensor["normal_F"], in_tensor["normal_B"] = normal_net.netG(in_tensor)
in_tensor["smpl_verts"] = batch_smpl_verts * torch.tensor([1., -1., 1.]).to(device)
in_tensor["smpl_faces"] = batch_smpl_faces[:, :, [0, 2, 1]]
else:
# smpl optimization
loop_smpl = tqdm(range(fitting_step))
for i in loop_smpl:
per_loop_lst = []
optimizer_smpl.zero_grad()
N_body, N_pose = optimed_pose.shape[:2]
# 6d_rot to rot_mat
optimed_orient_mat = rot6d_to_rotmat(optimed_orient.view(-1, 6)).view(N_body, 1, 3, 3)
optimed_pose_mat = rot6d_to_rotmat(optimed_pose.view(-1, 6)).view(N_body, N_pose, 3, 3)
smpl_verts, smpl_landmarks, smpl_joints = dataset.smpl_model(
shape_params=optimed_betas,
expression_params=tensor2variable(data["exp"], device),
body_pose=optimed_pose_mat,
global_pose=optimed_orient_mat,
jaw_pose=tensor2variable(data["jaw_pose"], device),
left_hand_pose=tensor2variable(data["left_hand_pose"], device),
right_hand_pose=tensor2variable(data["right_hand_pose"], device),
)
smpl_verts = (smpl_verts + optimed_trans) * data["scale"]
smpl_joints = (smpl_joints + optimed_trans) * data["scale"] * torch.tensor([
1.0, 1.0, -1.0
]).to(device)
# landmark errors
smpl_joints_3d = (
smpl_joints[:, dataset.smpl_data.smpl_joint_ids_45_pixie, :] + 1.0
) * 0.5
in_tensor["smpl_joint"] = smpl_joints[:, dataset.smpl_data.smpl_joint_ids_24_pixie, :]
ghum_lmks = data["landmark"][:, SMPLX_object.ghum_smpl_pairs[:, 0], :2].to(device)
ghum_conf = data["landmark"][:, SMPLX_object.ghum_smpl_pairs[:, 0], -1].to(device)
smpl_lmks = smpl_joints_3d[:, SMPLX_object.ghum_smpl_pairs[:, 1], :2]
# render optimized mesh as normal [-1,1]
in_tensor["T_normal_F"], in_tensor["T_normal_B"] = dataset.render_normal(
smpl_verts * torch.tensor([1.0, -1.0, -1.0]).to(device),
in_tensor["smpl_faces"],
)
T_mask_F, T_mask_B = dataset.render.get_image(type="mask")
with torch.no_grad():
in_tensor["normal_F"], in_tensor["normal_B"] = normal_net.netG(in_tensor)
diff_F_smpl = torch.abs(in_tensor["T_normal_F"] - in_tensor["normal_F"])
diff_B_smpl = torch.abs(in_tensor["T_normal_B"] - in_tensor["normal_B"])
# silhouette loss
smpl_arr = torch.cat([T_mask_F, T_mask_B], dim=-1)
gt_arr = in_tensor["mask"].repeat(1, 1, 2)
diff_S = torch.abs(smpl_arr - gt_arr)
losses["silhouette"]["value"] = diff_S.mean()
# large cloth_overlap --> big difference between body and cloth mask
# for loose clothing, reply more on landmarks instead of silhouette+normal loss
cloth_overlap = diff_S.sum(dim=[1, 2]) / gt_arr.sum(dim=[1, 2])
cloth_overlap_flag = cloth_overlap > cfg.cloth_overlap_thres
losses["joint"]["weight"] = [50.0 if flag else 5.0 for flag in cloth_overlap_flag]
# small body_overlap --> large occlusion or out-of-frame
# for highly occluded body, reply only on high-confidence landmarks, no silhouette+normal loss
# BUG: PyTorch3D silhouette renderer generates dilated mask
bg_value = in_tensor["T_normal_F"][0, 0, 0, 0]
smpl_arr_fake = torch.cat([
in_tensor["T_normal_F"][:, 0].ne(bg_value).float(),
in_tensor["T_normal_B"][:, 0].ne(bg_value).float()
],
dim=-1)
body_overlap = (gt_arr * smpl_arr_fake.gt(0.0)
).sum(dim=[1, 2]) / smpl_arr_fake.gt(0.0).sum(dim=[1, 2])
body_overlap_mask = (gt_arr * smpl_arr_fake).unsqueeze(1)
body_overlap_flag = body_overlap < cfg.body_overlap_thres
losses["normal"]["value"] = (
diff_F_smpl * body_overlap_mask[..., :512] +
diff_B_smpl * body_overlap_mask[..., 512:]
).mean() / 2.0
losses["silhouette"]["weight"] = [0 if flag else 1.0 for flag in body_overlap_flag]
occluded_idx = torch.where(body_overlap_flag)[0]
ghum_conf[occluded_idx] *= ghum_conf[occluded_idx] > 0.95
losses["joint"]["value"] = (torch.norm(ghum_lmks - smpl_lmks, dim=2) *
ghum_conf).mean(dim=1)
# Weighted sum of the losses
smpl_loss = 0.0
pbar_desc = "Body Fitting -- "
for k in ["normal", "silhouette", "joint"]:
per_loop_loss = (losses[k]["value"] *
torch.tensor(losses[k]["weight"]).to(device)).mean()
pbar_desc += f"{k}: {per_loop_loss:.3f} | "
smpl_loss += per_loop_loss
pbar_desc += f"Total: {smpl_loss:.3f}"
loose_str = ''.join([str(j) for j in cloth_overlap_flag.int().tolist()])
occlude_str = ''.join([str(j) for j in body_overlap_flag.int().tolist()])
pbar_desc += colored(f"| loose:{loose_str}, occluded:{occlude_str}", "yellow")
loop_smpl.set_description(pbar_desc)
# save intermediate results
if (i == fitting_step - 1):
per_loop_lst.extend([
in_tensor["image"],
in_tensor["T_normal_F"],
in_tensor["normal_F"],
diff_S[:, :, :512].unsqueeze(1).repeat(1, 3, 1, 1),
])
per_loop_lst.extend([
in_tensor["image"],
in_tensor["T_normal_B"],
in_tensor["normal_B"],
diff_S[:, :, 512:].unsqueeze(1).repeat(1, 3, 1, 1),
])
per_data_lst.append(
get_optim_grid_image(per_loop_lst, None, nrow=N_body * 2, type="smpl")
)
smpl_loss.backward()
optimizer_smpl.step()
scheduler_smpl.step(smpl_loss)
in_tensor["smpl_verts"] = smpl_verts * torch.tensor([1.0, 1.0, -1.0]).to(device)
in_tensor["smpl_faces"] = in_tensor["smpl_faces"][:, :, [0, 2, 1]]
per_data_lst[-1].save(osp.join(out_dir, cfg.name, f"png/{data['name']}_smpl.png"))
img_crop_path = osp.join(out_dir, cfg.name, "png", f"{data['name']}_crop.png")
torchvision.utils.save_image(
torch.cat([
data["img_crop"][:, :3], (in_tensor['normal_F'].detach().cpu() + 1.0) * 0.5,
(in_tensor['normal_B'].detach().cpu() + 1.0) * 0.5
],
dim=3), img_crop_path
)
rgb_norm_F = blend_rgb_norm(in_tensor["normal_F"], data)
rgb_norm_B = blend_rgb_norm(in_tensor["normal_B"], data)
img_overlap_path = osp.join(out_dir, cfg.name, f"png/{data['name']}_overlap.png")
torchvision.utils.save_image(
torch.cat([data["img_raw"], rgb_norm_F, rgb_norm_B], dim=-1) / 255., img_overlap_path
)
smpl_obj_lst = []
for idx in range(N_body):
smpl_obj = trimesh.Trimesh(
in_tensor["smpl_verts"].detach().cpu()[idx] * torch.tensor([1.0, -1.0, 1.0]),
in_tensor["smpl_faces"].detach().cpu()[0][:, [0, 2, 1]],
process=False,
maintains_order=True,
)
smpl_obj_path = f"{out_dir}/{cfg.name}/obj/{data['name']}_smpl_{idx:02d}.obj"
if not osp.exists(smpl_obj_path):
smpl_obj.export(smpl_obj_path)
smpl_obj.export(smpl_obj_path.replace(".obj", ".glb"))
smpl_info = {
"betas":
optimed_betas[idx].detach().cpu().unsqueeze(0),
"body_pose":
rotation_matrix_to_angle_axis(optimed_pose_mat[idx].detach()).cpu().unsqueeze(0),
"global_orient":
rotation_matrix_to_angle_axis(optimed_orient_mat[idx].detach()).cpu().unsqueeze(0),
"transl":
optimed_trans[idx].detach().cpu(),
"expression":
data["exp"][idx].cpu().unsqueeze(0),
"jaw_pose":
rotation_matrix_to_angle_axis(data["jaw_pose"][idx]).cpu().unsqueeze(0),
"left_hand_pose":
rotation_matrix_to_angle_axis(data["left_hand_pose"][idx]).cpu().unsqueeze(0),
"right_hand_pose":
rotation_matrix_to_angle_axis(data["right_hand_pose"][idx]).cpu().unsqueeze(0),
"scale":
data["scale"][idx].cpu(),
}
np.save(
smpl_obj_path.replace(".obj", ".npy"),
smpl_info,
allow_pickle=True,
)
smpl_obj_lst.append(smpl_obj)
del optimizer_smpl
del optimed_betas
del optimed_orient
del optimed_pose
del optimed_trans
torch.cuda.empty_cache()
# ------------------------------------------------------------------------------------------------------------------
# clothing refinement
per_data_lst = []
batch_smpl_verts = in_tensor["smpl_verts"].detach() * torch.tensor([1.0, -1.0, 1.0],
device=device)
batch_smpl_faces = in_tensor["smpl_faces"].detach()[:, :, [0, 2, 1]]
in_tensor["depth_F"], in_tensor["depth_B"] = dataset.render_depth(
batch_smpl_verts, batch_smpl_faces
)
per_loop_lst = []
in_tensor["BNI_verts"] = []
in_tensor["BNI_faces"] = []
in_tensor["body_verts"] = []
in_tensor["body_faces"] = []
for idx in range(N_body):
final_path = f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_full.obj"
side_mesh = smpl_obj_lst[idx].copy()
face_mesh = smpl_obj_lst[idx].copy()
hand_mesh = smpl_obj_lst[idx].copy()
smplx_mesh = smpl_obj_lst[idx].copy()
# save normals, depths and masks
BNI_dict = save_normal_tensor(
in_tensor,
idx,
osp.join(out_dir, cfg.name, f"BNI/{data['name']}_{idx}"),
cfg.bni.thickness,
)
# BNI process
BNI_object = BNI(
dir_path=osp.join(out_dir, cfg.name, "BNI"),
name=data["name"],
BNI_dict=BNI_dict,
cfg=cfg.bni,
device=device
)
BNI_object.extract_surface(False)
in_tensor["body_verts"].append(torch.tensor(smpl_obj_lst[idx].vertices).float())
in_tensor["body_faces"].append(torch.tensor(smpl_obj_lst[idx].faces).long())
# requires shape completion when low overlap
# replace SMPL by completed mesh as side_mesh
if cfg.bni.use_ifnet:
side_mesh_path = f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_IF.obj"
side_mesh = apply_face_mask(side_mesh, ~SMPLX_object.smplx_eyeball_fid_mask)
# mesh completion via IF-net
in_tensor.update(
dataset.depth_to_voxel({
"depth_F": BNI_object.F_depth.unsqueeze(0), "depth_B":
BNI_object.B_depth.unsqueeze(0)
})
)
occupancies = VoxelGrid.from_mesh(side_mesh, cfg.vol_res, loc=[
0,
] * 3, scale=2.0).data.transpose(2, 1, 0)
occupancies = np.flip(occupancies, axis=1)
in_tensor["body_voxels"] = torch.tensor(occupancies.copy()
).float().unsqueeze(0).to(device)
with torch.no_grad():
sdf = ifnet.reconEngine(netG=ifnet.netG, batch=in_tensor)
verts_IF, faces_IF = ifnet.reconEngine.export_mesh(sdf)
if ifnet.clean_mesh_flag:
verts_IF, faces_IF = clean_mesh(verts_IF, faces_IF)
side_mesh = trimesh.Trimesh(verts_IF, faces_IF)
side_mesh = remesh_laplacian(side_mesh, side_mesh_path)
else:
side_mesh = apply_vertex_mask(
side_mesh,
(
SMPLX_object.front_flame_vertex_mask + SMPLX_object.smplx_mano_vertex_mask +
SMPLX_object.eyeball_vertex_mask
).eq(0).float(),
)
#register side_mesh to BNI surfaces
side_mesh = Meshes(
verts=[torch.tensor(side_mesh.vertices).float()],
faces=[torch.tensor(side_mesh.faces).long()],
).to(device)
sm = SubdivideMeshes(side_mesh)
side_mesh = register(BNI_object.F_B_trimesh, sm(side_mesh), device)
side_verts = torch.tensor(side_mesh.vertices).float().to(device)
side_faces = torch.tensor(side_mesh.faces).long().to(device)
# Possion Fusion between SMPLX and BNI
# 1. keep the faces invisible to front+back cameras
# 2. keep the front-FLAME+MANO faces
# 3. remove eyeball faces
# export intermediate meshes
BNI_object.F_B_trimesh.export(f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_BNI.obj")
full_lst = []
if "face" in cfg.bni.use_smpl:
# only face
face_mesh = apply_vertex_mask(face_mesh, SMPLX_object.front_flame_vertex_mask)
face_mesh.vertices = face_mesh.vertices - np.array([0, 0, cfg.bni.thickness])
# remove face neighbor triangles
BNI_object.F_B_trimesh = part_removal(
BNI_object.F_B_trimesh,
face_mesh,
cfg.bni.face_thres,
device,
smplx_mesh,
region="face"
)
side_mesh = part_removal(
side_mesh, face_mesh, cfg.bni.face_thres, device, smplx_mesh, region="face"
)
face_mesh.export(f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_face.obj")
full_lst += [face_mesh]
if "hand" in cfg.bni.use_smpl and (True in data['hands_visibility'][idx]):
hand_mask = torch.zeros(SMPLX_object.smplx_verts.shape[0], )
if data['hands_visibility'][idx][0]:
hand_mask.index_fill_(
0, torch.tensor(SMPLX_object.smplx_mano_vid_dict["left_hand"]), 1.0
)
if data['hands_visibility'][idx][1]:
hand_mask.index_fill_(
0, torch.tensor(SMPLX_object.smplx_mano_vid_dict["right_hand"]), 1.0
)
# only hands
hand_mesh = apply_vertex_mask(hand_mesh, hand_mask)
# remove hand neighbor triangles
BNI_object.F_B_trimesh = part_removal(
BNI_object.F_B_trimesh,
hand_mesh,
cfg.bni.hand_thres,
device,
smplx_mesh,
region="hand"
)
side_mesh = part_removal(
side_mesh, hand_mesh, cfg.bni.hand_thres, device, smplx_mesh, region="hand"
)
hand_mesh.export(f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_hand.obj")
full_lst += [hand_mesh]
full_lst += [BNI_object.F_B_trimesh]
# initial side_mesh could be SMPLX or IF-net
side_mesh = part_removal(
side_mesh, sum(full_lst), 2e-2, device, smplx_mesh, region="", clean=False
)
full_lst += [side_mesh]
# # export intermediate meshes
BNI_object.F_B_trimesh.export(f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_BNI.obj")
side_mesh.export(f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_side.obj")
final_mesh = poisson(
sum(full_lst),
final_path,
cfg.bni.poisson_depth,
)
print(
colored(f"\n Poisson completion to {Format.start} {final_path} {Format.end}", "yellow")
)
dataset.render.load_meshes(final_mesh.vertices, final_mesh.faces)
rotate_recon_lst = dataset.render.get_image(cam_type="four")
per_loop_lst.extend([in_tensor['image'][idx:idx + 1]] + rotate_recon_lst)
if cfg.bni.texture_src == 'image':
# coloring the final mesh (front: RGB pixels, back: normal colors)
final_colors = query_color(
torch.tensor(final_mesh.vertices).float(),
torch.tensor(final_mesh.faces).long(),
in_tensor["image"][idx:idx + 1],
device=device,
)
final_mesh.visual.vertex_colors = final_colors
final_mesh.export(final_path)
final_mesh.export(final_path.replace(".obj", ".glb"))
elif cfg.bni.texture_src == 'SD':
# !TODO: add texture from Stable Diffusion
pass
if len(per_loop_lst) > 0:
per_data_lst.append(get_optim_grid_image(per_loop_lst, None, nrow=5, type="cloth"))
per_data_lst[-1].save(osp.join(out_dir, cfg.name, f"png/{data['name']}_cloth.png"))
# for video rendering
in_tensor["BNI_verts"].append(torch.tensor(final_mesh.vertices).float())
in_tensor["BNI_faces"].append(torch.tensor(final_mesh.faces).long())
os.makedirs(osp.join(out_dir, cfg.name, "vid"), exist_ok=True)
in_tensor["uncrop_param"] = data["uncrop_param"]
in_tensor["img_raw"] = data["img_raw"]
torch.save(in_tensor, osp.join(out_dir, cfg.name, f"vid/{data['name']}_in_tensor.pt"))
smpl_glb_path = smpl_obj_path.replace(".obj", ".glb")
# smpl_npy_path = smpl_obj_path.replace(".obj", ".npy")
refine_obj_path = final_path
refine_glb_path = final_path.replace(".obj", ".glb")
overlap_path = img_overlap_path
vis_tensor_path = osp.join(out_dir, cfg.name, f"vid/{data['name']}_in_tensor.pt")
# # clean all the variables
# for element in dir():
# if 'path' not in element:
# del locals()[element]
# import gc
# gc.collect()
# torch.cuda.empty_cache()
return [smpl_glb_path, refine_glb_path, refine_obj_path, overlap_path, vis_tensor_path]
|