Spaces:
Runtime error
Runtime error
File size: 7,161 Bytes
da48dbe c3d3e4a da48dbe 66ab6d4 da48dbe 66ab6d4 c3d3e4a da48dbe 66ab6d4 da48dbe 66ab6d4 da48dbe 66ab6d4 da48dbe 66ab6d4 da48dbe 66ab6d4 da48dbe 66ab6d4 da48dbe 66ab6d4 da48dbe 66ab6d4 da48dbe 66ab6d4 da48dbe 66ab6d4 da48dbe 66ab6d4 da48dbe 66ab6d4 da48dbe 66ab6d4 da48dbe 66ab6d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
<!-- PROJECT LOGO -->
<p align="center">
<h1 align="center">ECON: Explicit Clothed humans Obtained from Normals</h1>
<p align="center">
<a href="http://xiuyuliang.cn/"><strong>Yuliang Xiu</strong></a>
路
<a href="https://ps.is.tuebingen.mpg.de/person/jyang"><strong>Jinlong Yang</strong></a>
路
<a href="https://hoshino042.github.io/homepage/"><strong>Xu Cao</strong></a>
路
<a href="https://ps.is.mpg.de/~dtzionas"><strong>Dimitrios Tzionas</strong></a>
路
<a href="https://ps.is.tuebingen.mpg.de/person/black"><strong>Michael J. Black</strong></a>
</p>
<h2 align="center">arXiv 2022</h2>
<div align="center">
<img src="./assets/teaser.gif" alt="Logo" width="100%">
</div>
<p align="center">
<br>
<a href="https://pytorch.org/get-started/locally/"><img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-ee4c2c?logo=pytorch&logoColor=white"></a>
<a href="https://pytorchlightning.ai/"><img alt="Lightning" src="https://img.shields.io/badge/-Lightning-792ee5?logo=pytorchlightning&logoColor=white"></a>
<br></br>
<a href=''>
<img src='https://img.shields.io/badge/Paper-PDF (coming soon)-green?style=for-the-badge&logo=arXiv&logoColor=green' alt='Paper PDF'>
</a>
<a href='https://xiuyuliang.cn/econ/'>
<img src='https://img.shields.io/badge/ECON-Page-orange?style=for-the-badge&logo=Google%20chrome&logoColor=white' alt='Project Page'></a>
<a href="https://discord.gg/Vqa7KBGRyk"><img src="https://img.shields.io/discord/940240966844035082?color=7289DA&labelColor=4a64bd&logo=discord&logoColor=white&style=for-the-badge"></a>
<a href="https://youtu.be/j5hw4tsWpoY"><img alt="youtube views" title="Subscribe to my YouTube channel" src="https://img.shields.io/youtube/views/j5hw4tsWpoY?logo=youtube&labelColor=ce4630&style=for-the-badge"/></a>
</p>
</p>
<br/>
ECON is designed for **"Human digitization from a color image"**, which combines the best properties of implicit and explicit representations, to infer high-fidelity 3D clothed humans from in-the-wild images, even with **loose clothing** or in **challenging poses**. ECON also supports batch reconstruction from **multi-person** photos.
<br/>
<br/>
## News :triangular_flag_on_post:
- [2022/12/09] <a href="#demo">Demo</a> is available.
## TODO
- [ ] Blender add-on for FBX export
- [ ] Full RGB texture generation
<br>
<!-- TABLE OF CONTENTS -->
<details open="open" style='padding: 10px; border-radius:5px 30px 30px 5px; border-style: solid; border-width: 1px;'>
<summary>Table of Contents</summary>
<ol>
<li>
<a href="#instructions">Instructions</a>
</li>
<li>
<a href="#demo">Demo</a>
</li>
<li>
<a href="#tricks">Tricks</a>
</li>
<li>
<a href="#citation">Citation</a>
</li>
</ol>
</details>
<br/>
## Instructions
- See [docs/installation.md](docs/installation.md) to install all the required packages and setup the models
## Demo
```bash
# For single-person image-based reconstruction
python -m apps.infer -cfg ./configs/econ.yaml -in_dir ./examples -out_dir ./results
# For multi-person image-based reconstruction (see config/econ.yaml)
python -m apps.infer -cfg ./configs/econ.yaml -in_dir ./examples -out_dir ./results -multi
# To generate the demo video of reconstruction results
python -m apps.multi_render -n {filename}
```
## Tricks
### Some adjustable parameters in _config/econ.yaml_
- `use_ifnet: True`
- True: use IF-Nets+ for mesh completion ( $\text{ECON}_\text{IF}$ - Better quality)
- False: use SMPL-X for mesh completion ( $\text{ECON}_\text{EX}$ - Faster speed)
- `use_smpl: ["hand", "face"]`
- [ ]: don't use either hands or face parts from SMPL-X
- ["hand"]: only use the **visible** hands from SMPL-X
- ["hand", "face"]: use both **visible** hands and face from SMPL-X
- `thickness: 2cm`
- could be increased accordingly in case **xx_full.obj** looks flat
- `hps_type: pixie`
- "pixie": more accurate for face and hands
- "pymafx": more robust for challenging poses
<br/>
## More Qualitative Results
| ![OOD Poses](assets/OOD-poses.jpg) |
| :--------------------------------------------------------------------------------: |
| _Challenging Poses_ |
| ![OOD Clothes](assets/OOD-outfits.jpg) |
| _Loose Clothes_ |
| ![SHHQ](assets/SHHQ.gif) |
| _ECON Results on [SHHQ Dataset](https://github.com/stylegan-human/StyleGAN-Human)_ |
| ![crowd](assets/crowd.gif) |
| _ECON Results on Multi-Person Image_ |
<br/>
<br/>
## Citation
```bibtex
@misc{xiu2022econ,
title={ECON: Explicit Clothed humans Obtained from Normals},
author={Xiu, Yuliang and Yang, Jinlong and Cao, Xu and Tzionas, Dimitrios and Black, Michael J.},
year={2022}
publisher={arXiv},
primaryClass={cs.CV}
}
```
<br/>
## Acknowledgments
We thank [Lea Hering](https://is.mpg.de/person/lhering) and [Radek Dan臎膷ek](https://is.mpg.de/person/rdanecek) for proof reading, [Yao Feng](https://ps.is.mpg.de/person/yfeng), [Haven Feng](https://is.mpg.de/person/hfeng), and [Weiyang Liu](https://wyliu.com/) for their feedback and discussions, [Tsvetelina Alexiadis](https://ps.is.mpg.de/person/talexiadis) for her help with the AMT perceptual study.
Here are some great resources we benefit from:
- [ICON](https://github.com/YuliangXiu/ICON) for Body Fitting
- [MonoPortDataset](https://github.com/Project-Splinter/MonoPortDataset) for Data Processing
- [rembg](https://github.com/danielgatis/rembg) for Human Segmentation
- [smplx](https://github.com/vchoutas/smplx), [PyMAF-X](https://www.liuyebin.com/pymaf-x/), [PIXIE](https://github.com/YadiraF/PIXIE) for Human Pose & Shape Estimation
- [CAPE](https://github.com/qianlim/CAPE) and [THuman](https://github.com/ZhengZerong/DeepHuman/tree/master/THUmanDataset) for Dataset
- [PyTorch3D](https://github.com/facebookresearch/pytorch3d) for Differential Rendering
Some images used in the qualitative examples come from [pinterest.com](https://www.pinterest.com/).
This project has received funding from the European Union鈥檚 Horizon 2020 research and innovation programme under the Marie Sk艂odowska-Curie grant agreement No.860768 ([CLIPE Project](https://www.clipe-itn.eu)).
---
<br>
## License
This code and model are available for non-commercial scientific research purposes as defined in the [LICENSE](LICENSE) file. By downloading and using the code and model you agree to the terms in the [LICENSE](LICENSE).
## Disclosure
MJB has received research gift funds from Adobe, Intel, Nvidia, Meta/Facebook, and Amazon. MJB has financial interests in Amazon, Datagen Technologies, and Meshcapade GmbH.
## Contact
For technical questions, please contact yuliang.xiu@tue.mpg.de
For commercial licensing, please contact ps-licensing@tue.mpg.de
|