ECON / lib /pymafx /models /maf_extractor.py
Yuliang's picture
Support TEXTure
487ee6d
raw
history blame
10.1 kB
# This script is borrowed and extended from https://github.com/shunsukesaito/PIFu/blob/master/lib/model/SurfaceClassifier.py
import logging
import numpy as np
import scipy
import torch
import torch.nn as nn
import torch.nn.functional as F
from lib.pymafx.core import path_config
from lib.pymafx.utils.geometry import projection
logger = logging.getLogger(__name__)
from lib.pymafx.utils.imutils import j2d_processing
from .transformers.net_utils import PosEnSine
from .transformers.transformer_basics import OurMultiheadAttention
class TransformerDecoderUnit(nn.Module):
def __init__(
self, feat_dim, attri_dim=0, n_head=8, pos_en_flag=True, attn_type='softmax', P=None
):
super(TransformerDecoderUnit, self).__init__()
self.feat_dim = feat_dim
self.attn_type = attn_type
self.pos_en_flag = pos_en_flag
self.P = P
assert attri_dim == 0
if self.pos_en_flag:
pe_dim = 10
self.pos_en = PosEnSine(pe_dim)
else:
pe_dim = 0
self.attn = OurMultiheadAttention(
feat_dim + attri_dim + pe_dim * 3, feat_dim + pe_dim * 3, feat_dim, n_head
) # cross-attention
self.linear1 = nn.Conv2d(self.feat_dim, self.feat_dim, 1)
self.linear2 = nn.Conv2d(self.feat_dim, self.feat_dim, 1)
self.activation = nn.ReLU(inplace=True)
self.norm = nn.BatchNorm2d(self.feat_dim)
def forward(self, q, k, v, pos=None):
if self.pos_en_flag:
q_pos_embed = self.pos_en(q, pos)
k_pos_embed = self.pos_en(k)
q = torch.cat([q, q_pos_embed], dim=1)
k = torch.cat([k, k_pos_embed], dim=1)
# else:
# q_pos_embed = 0
# k_pos_embed = 0
# cross-multi-head attention
out = self.attn(q=q, k=k, v=v, attn_type=self.attn_type, P=self.P)[0]
# feed forward
out2 = self.linear2(self.activation(self.linear1(out)))
out = out + out2
out = self.norm(out)
return out
class Mesh_Sampler(nn.Module):
''' Mesh Up/Down-sampling
'''
def __init__(self, type='smpl', level=2, device=torch.device('cuda'), option=None):
super().__init__()
# downsample SMPL mesh and assign part labels
if type == 'smpl':
# from https://github.com/nkolot/GraphCMR/blob/master/data/mesh_downsampling.npz
smpl_mesh_graph = np.load(
path_config.SMPL_DOWNSAMPLING, allow_pickle=True, encoding='latin1'
)
A = smpl_mesh_graph['A']
U = smpl_mesh_graph['U']
D = smpl_mesh_graph['D'] # shape: (2,)
elif type == 'mano':
# from https://github.com/microsoft/MeshGraphormer/blob/main/src/modeling/data/mano_downsampling.npz
mano_mesh_graph = np.load(
path_config.MANO_DOWNSAMPLING, allow_pickle=True, encoding='latin1'
)
A = mano_mesh_graph['A']
U = mano_mesh_graph['U']
D = mano_mesh_graph['D'] # shape: (2,)
# downsampling
ptD = []
for lv in range(len(D)):
d = scipy.sparse.coo_matrix(D[lv])
i = torch.LongTensor(np.array([d.row, d.col]))
v = torch.FloatTensor(d.data)
ptD.append(torch.sparse.FloatTensor(i, v, d.shape))
# downsampling mapping from 6890 points to 431 points
# ptD[0].to_dense() - Size: [1723, 6890] , [195, 778]
# ptD[1].to_dense() - Size: [431, 1723] , [49, 195]
if level == 2:
Dmap = torch.matmul(ptD[1].to_dense(), ptD[0].to_dense()) # 6890 -> 431
elif level == 1:
Dmap = ptD[0].to_dense() #
self.register_buffer('Dmap', Dmap)
# upsampling
ptU = []
for lv in range(len(U)):
d = scipy.sparse.coo_matrix(U[lv])
i = torch.LongTensor(np.array([d.row, d.col]))
v = torch.FloatTensor(d.data)
ptU.append(torch.sparse.FloatTensor(i, v, d.shape))
# upsampling mapping from 431 points to 6890 points
# ptU[0].to_dense() - Size: [6890, 1723]
# ptU[1].to_dense() - Size: [1723, 431]
if level == 2:
Umap = torch.matmul(ptU[0].to_dense(), ptU[1].to_dense()) # 431 -> 6890
elif level == 1:
Umap = ptU[0].to_dense() #
self.register_buffer('Umap', Umap)
def downsample(self, x):
return torch.matmul(self.Dmap.unsqueeze(0), x) # [B, 431, 3]
def upsample(self, x):
return torch.matmul(self.Umap.unsqueeze(0), x) # [B, 6890, 3]
def forward(self, x, mode='downsample'):
if mode == 'downsample':
return self.downsample(x)
elif mode == 'upsample':
return self.upsample(x)
class MAF_Extractor(nn.Module):
''' Mesh-aligned Feature Extrator
As discussed in the paper, we extract mesh-aligned features based on 2D projection of the mesh vertices.
The features extrated from spatial feature maps will go through a MLP for dimension reduction.
'''
def __init__(
self, filter_channels, device=torch.device('cuda'), iwp_cam_mode=True, option=None
):
super().__init__()
self.device = device
self.filters = []
self.num_views = 1
self.last_op = nn.ReLU(True)
self.iwp_cam_mode = iwp_cam_mode
for l in range(0, len(filter_channels) - 1):
if 0 != l:
self.filters.append(
nn.Conv1d(filter_channels[l] + filter_channels[0], filter_channels[l + 1], 1)
)
else:
self.filters.append(nn.Conv1d(filter_channels[l], filter_channels[l + 1], 1))
self.add_module("conv%d" % l, self.filters[l])
# downsample SMPL mesh and assign part labels
# from https://github.com/nkolot/GraphCMR/blob/master/data/mesh_downsampling.npz
smpl_mesh_graph = np.load(
path_config.SMPL_DOWNSAMPLING, allow_pickle=True, encoding='latin1'
)
A = smpl_mesh_graph['A']
U = smpl_mesh_graph['U']
D = smpl_mesh_graph['D'] # shape: (2,)
# downsampling
ptD = []
for level in range(len(D)):
d = scipy.sparse.coo_matrix(D[level])
i = torch.LongTensor(np.array([d.row, d.col]))
v = torch.FloatTensor(d.data)
ptD.append(torch.sparse.FloatTensor(i, v, d.shape))
# downsampling mapping from 6890 points to 431 points
# ptD[0].to_dense() - Size: [1723, 6890]
# ptD[1].to_dense() - Size: [431. 1723]
Dmap = torch.matmul(ptD[1].to_dense(), ptD[0].to_dense()) # 6890 -> 431
self.register_buffer('Dmap', Dmap)
# upsampling
ptU = []
for level in range(len(U)):
d = scipy.sparse.coo_matrix(U[level])
i = torch.LongTensor(np.array([d.row, d.col]))
v = torch.FloatTensor(d.data)
ptU.append(torch.sparse.FloatTensor(i, v, d.shape))
# upsampling mapping from 431 points to 6890 points
# ptU[0].to_dense() - Size: [6890, 1723]
# ptU[1].to_dense() - Size: [1723, 431]
Umap = torch.matmul(ptU[0].to_dense(), ptU[1].to_dense()) # 431 -> 6890
self.register_buffer('Umap', Umap)
def reduce_dim(self, feature):
'''
Dimension reduction by multi-layer perceptrons
:param feature: list of [B, C_s, N] point-wise features before dimension reduction
:return: [B, C_p x N] concatantion of point-wise features after dimension reduction
'''
y = feature
tmpy = feature
for i, f in enumerate(self.filters):
y = self._modules['conv' + str(i)](y if i == 0 else torch.cat([y, tmpy], 1))
if i != len(self.filters) - 1:
y = F.leaky_relu(y)
if self.num_views > 1 and i == len(self.filters) // 2:
y = y.view(-1, self.num_views, y.shape[1], y.shape[2]).mean(dim=1)
tmpy = feature.view(-1, self.num_views, feature.shape[1],
feature.shape[2]).mean(dim=1)
y = self.last_op(y)
# y = y.view(y.shape[0], -1)
return y
def sampling(self, points, im_feat=None, z_feat=None, add_att=False, reduce_dim=True):
'''
Given 2D points, sample the point-wise features for each point,
the dimension of point-wise features will be reduced from C_s to C_p by MLP.
Image features should be pre-computed before this call.
:param points: [B, N, 2] image coordinates of points
:im_feat: [B, C_s, H_s, W_s] spatial feature maps
:return: [B, C_p x N] concatantion of point-wise features after dimension reduction
'''
# if im_feat is None:
# im_feat = self.im_feat
batch_size = im_feat.shape[0]
point_feat = torch.nn.functional.grid_sample(
im_feat, points.unsqueeze(2), align_corners=False
)[..., 0]
if reduce_dim:
mesh_align_feat = self.reduce_dim(point_feat)
return mesh_align_feat
else:
return point_feat
def forward(self, p, im_feat, cam=None, add_att=False, reduce_dim=True, **kwargs):
''' Returns mesh-aligned features for the 3D mesh points.
Args:
p (tensor): [B, N_m, 3] mesh vertices
im_feat (tensor): [B, C_s, H_s, W_s] spatial feature maps
cam (tensor): [B, 3] camera
Return:
mesh_align_feat (tensor): [B, C_p x N_m] mesh-aligned features
'''
# if cam is None:
# cam = self.cam
p_proj_2d = projection(p, cam, retain_z=False, iwp_mode=self.iwp_cam_mode)
if self.iwp_cam_mode:
# Normalize keypoints to [-1,1]
p_proj_2d = p_proj_2d / (224. / 2.)
else:
p_proj_2d = j2d_processing(p_proj_2d, cam['kps_transf'])
mesh_align_feat = self.sampling(p_proj_2d, im_feat, add_att=add_att, reduce_dim=reduce_dim)
return mesh_align_feat