Spaces:
Runtime error
Runtime error
# code brought in part from https://github.com/microsoft/human-pose-estimation.pytorch/blob/master/lib/models/pose_resnet.py | |
from __future__ import absolute_import, division, print_function | |
import logging | |
import os | |
from collections import OrderedDict | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from lib.pymafx.core.cfgs import cfg | |
# from .transformers.tokenlearner import TokenLearner | |
logger = logging.getLogger(__name__) | |
BN_MOMENTUM = 0.1 | |
def conv3x3(in_planes, out_planes, stride=1, bias=False, groups=1): | |
"""3x3 convolution with padding""" | |
return nn.Conv2d( | |
in_planes * groups, | |
out_planes * groups, | |
kernel_size=3, | |
stride=stride, | |
padding=1, | |
bias=bias, | |
groups=groups | |
) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1): | |
super().__init__() | |
self.conv1 = conv3x3(inplanes, planes, stride, groups=groups) | |
self.bn1 = nn.BatchNorm2d(planes * groups, momentum=BN_MOMENTUM) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes, groups=groups) | |
self.bn2 = nn.BatchNorm2d(planes * groups, momentum=BN_MOMENTUM) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1): | |
super().__init__() | |
self.conv1 = nn.Conv2d( | |
inplanes * groups, planes * groups, kernel_size=1, bias=False, groups=groups | |
) | |
self.bn1 = nn.BatchNorm2d(planes * groups, momentum=BN_MOMENTUM) | |
self.conv2 = nn.Conv2d( | |
planes * groups, | |
planes * groups, | |
kernel_size=3, | |
stride=stride, | |
padding=1, | |
bias=False, | |
groups=groups | |
) | |
self.bn2 = nn.BatchNorm2d(planes * groups, momentum=BN_MOMENTUM) | |
self.conv3 = nn.Conv2d( | |
planes * groups, | |
planes * self.expansion * groups, | |
kernel_size=1, | |
bias=False, | |
groups=groups | |
) | |
self.bn3 = nn.BatchNorm2d(planes * self.expansion * groups, momentum=BN_MOMENTUM) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
resnet_spec = { | |
18: (BasicBlock, [2, 2, 2, 2]), 34: (BasicBlock, [3, 4, 6, 3]), 50: (Bottleneck, [3, 4, 6, 3]), | |
101: (Bottleneck, [3, 4, 23, 3]), 152: (Bottleneck, [3, 8, 36, 3]) | |
} | |
class IUV_predict_layer(nn.Module): | |
def __init__(self, feat_dim=256, final_cov_k=3, out_channels=25, with_uv=True, mode='iuv'): | |
super().__init__() | |
assert mode in ['iuv', 'seg', 'pncc'] | |
self.mode = mode | |
if mode == 'seg': | |
self.predict_ann_index = nn.Conv2d( | |
in_channels=feat_dim, | |
out_channels=15, | |
kernel_size=final_cov_k, | |
stride=1, | |
padding=1 if final_cov_k == 3 else 0 | |
) | |
self.predict_uv_index = nn.Conv2d( | |
in_channels=feat_dim, | |
out_channels=25, | |
kernel_size=final_cov_k, | |
stride=1, | |
padding=1 if final_cov_k == 3 else 0 | |
) | |
elif mode == 'iuv': | |
self.predict_u = nn.Conv2d( | |
in_channels=feat_dim, | |
out_channels=25, | |
kernel_size=final_cov_k, | |
stride=1, | |
padding=1 if final_cov_k == 3 else 0 | |
) | |
self.predict_v = nn.Conv2d( | |
in_channels=feat_dim, | |
out_channels=25, | |
kernel_size=final_cov_k, | |
stride=1, | |
padding=1 if final_cov_k == 3 else 0 | |
) | |
self.predict_ann_index = nn.Conv2d( | |
in_channels=feat_dim, | |
out_channels=15, | |
kernel_size=final_cov_k, | |
stride=1, | |
padding=1 if final_cov_k == 3 else 0 | |
) | |
self.predict_uv_index = nn.Conv2d( | |
in_channels=feat_dim, | |
out_channels=25, | |
kernel_size=final_cov_k, | |
stride=1, | |
padding=1 if final_cov_k == 3 else 0 | |
) | |
elif mode in ['pncc']: | |
self.predict_pncc = nn.Conv2d( | |
in_channels=feat_dim, | |
out_channels=3, | |
kernel_size=final_cov_k, | |
stride=1, | |
padding=1 if final_cov_k == 3 else 0 | |
) | |
self.inplanes = feat_dim | |
def _make_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d( | |
self.inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
bias=False | |
), | |
nn.BatchNorm2d(planes * block.expansion), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
return_dict = {} | |
if self.mode in ['iuv', 'seg']: | |
predict_uv_index = self.predict_uv_index(x) | |
predict_ann_index = self.predict_ann_index(x) | |
return_dict['predict_uv_index'] = predict_uv_index | |
return_dict['predict_ann_index'] = predict_ann_index | |
if self.mode == 'iuv': | |
predict_u = self.predict_u(x) | |
predict_v = self.predict_v(x) | |
return_dict['predict_u'] = predict_u | |
return_dict['predict_v'] = predict_v | |
else: | |
return_dict['predict_u'] = None | |
return_dict['predict_v'] = None | |
# return_dict['predict_u'] = torch.zeros(predict_uv_index.shape).to(predict_uv_index.device) | |
# return_dict['predict_v'] = torch.zeros(predict_uv_index.shape).to(predict_uv_index.device) | |
if self.mode == 'pncc': | |
predict_pncc = self.predict_pncc(x) | |
return_dict['predict_pncc'] = predict_pncc | |
return return_dict | |
class Seg_predict_layer(nn.Module): | |
def __init__(self, feat_dim=256, final_cov_k=3, out_channels=25): | |
super().__init__() | |
self.predict_seg_index = nn.Conv2d( | |
in_channels=feat_dim, | |
out_channels=out_channels, | |
kernel_size=final_cov_k, | |
stride=1, | |
padding=1 if final_cov_k == 3 else 0 | |
) | |
self.inplanes = feat_dim | |
def forward(self, x): | |
return_dict = {} | |
predict_seg_index = self.predict_seg_index(x) | |
return_dict['predict_seg_index'] = predict_seg_index | |
return return_dict | |
class Kps_predict_layer(nn.Module): | |
def __init__(self, feat_dim=256, final_cov_k=3, out_channels=3, add_module=None): | |
super().__init__() | |
if add_module is not None: | |
conv = nn.Conv2d( | |
in_channels=feat_dim, | |
out_channels=out_channels, | |
kernel_size=final_cov_k, | |
stride=1, | |
padding=1 if final_cov_k == 3 else 0 | |
) | |
self.predict_kps = nn.Sequential( | |
add_module, | |
# nn.BatchNorm2d(feat_dim, momentum=BN_MOMENTUM), | |
# conv, | |
) | |
else: | |
self.predict_kps = nn.Conv2d( | |
in_channels=feat_dim, | |
out_channels=out_channels, | |
kernel_size=final_cov_k, | |
stride=1, | |
padding=1 if final_cov_k == 3 else 0 | |
) | |
self.inplanes = feat_dim | |
def forward(self, x): | |
return_dict = {} | |
predict_kps = self.predict_kps(x) | |
return_dict['predict_kps'] = predict_kps | |
return return_dict | |
class SmplResNet(nn.Module): | |
def __init__( | |
self, | |
resnet_nums, | |
in_channels=3, | |
num_classes=229, | |
last_stride=2, | |
n_extra_feat=0, | |
truncate=0, | |
**kwargs | |
): | |
super().__init__() | |
self.inplanes = 64 | |
self.truncate = truncate | |
# extra = cfg.MODEL.EXTRA | |
# self.deconv_with_bias = extra.DECONV_WITH_BIAS | |
block, layers = resnet_spec[resnet_nums] | |
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3, bias=False) | |
self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, 64, layers[0]) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) if truncate < 2 else None | |
self.layer4 = self._make_layer( | |
block, 512, layers[3], stride=last_stride | |
) if truncate < 1 else None | |
self.avg_pooling = nn.AdaptiveAvgPool2d(1) | |
self.num_classes = num_classes | |
if num_classes > 0: | |
self.final_layer = nn.Linear(512 * block.expansion, num_classes) | |
nn.init.xavier_uniform_(self.final_layer.weight, gain=0.01) | |
self.n_extra_feat = n_extra_feat | |
if n_extra_feat > 0: | |
self.trans_conv = nn.Sequential( | |
nn.Conv2d( | |
n_extra_feat + 512 * block.expansion, | |
512 * block.expansion, | |
kernel_size=1, | |
bias=False | |
), nn.BatchNorm2d(512 * block.expansion, momentum=BN_MOMENTUM), nn.ReLU(True) | |
) | |
def _make_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d( | |
self.inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
bias=False | |
), | |
nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
def forward(self, x, infeat=None): | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.maxpool(x) | |
x1 = self.layer1(x) | |
x2 = self.layer2(x1) | |
x3 = self.layer3(x2) if self.truncate < 2 else x2 | |
x4 = self.layer4(x3) if self.truncate < 1 else x3 | |
if infeat is not None: | |
x4 = self.trans_conv(torch.cat([infeat, x4], 1)) | |
if self.num_classes > 0: | |
xp = self.avg_pooling(x4) | |
cls = self.final_layer(xp.view(xp.size(0), -1)) | |
if not cfg.DANET.USE_MEAN_PARA: | |
# for non-negative scale | |
scale = F.relu(cls[:, 0]).unsqueeze(1) | |
cls = torch.cat((scale, cls[:, 1:]), dim=1) | |
else: | |
cls = None | |
return cls, {'x4': x4} | |
def init_weights(self, pretrained=''): | |
if os.path.isfile(pretrained): | |
logger.info('=> loading pretrained model {}'.format(pretrained)) | |
# self.load_state_dict(pretrained_state_dict, strict=False) | |
checkpoint = torch.load(pretrained) | |
if isinstance(checkpoint, OrderedDict): | |
# state_dict = checkpoint | |
state_dict_old = self.state_dict() | |
for key in state_dict_old.keys(): | |
if key in checkpoint.keys(): | |
if state_dict_old[key].shape != checkpoint[key].shape: | |
del checkpoint[key] | |
state_dict = checkpoint | |
elif isinstance(checkpoint, dict) and 'state_dict' in checkpoint: | |
state_dict_old = checkpoint['state_dict'] | |
state_dict = OrderedDict() | |
# delete 'module.' because it is saved from DataParallel module | |
for key in state_dict_old.keys(): | |
if key.startswith('module.'): | |
# state_dict[key[7:]] = state_dict[key] | |
# state_dict.pop(key) | |
state_dict[key[7:]] = state_dict_old[key] | |
else: | |
state_dict[key] = state_dict_old[key] | |
else: | |
raise RuntimeError('No state_dict found in checkpoint file {}'.format(pretrained)) | |
self.load_state_dict(state_dict, strict=False) | |
else: | |
logger.error('=> imagenet pretrained model dose not exist') | |
logger.error('=> please download it first') | |
raise ValueError('imagenet pretrained model does not exist') | |
class LimbResLayers(nn.Module): | |
def __init__(self, resnet_nums, inplanes, outplanes=None, groups=1, **kwargs): | |
super().__init__() | |
self.inplanes = inplanes | |
block, layers = resnet_spec[resnet_nums] | |
self.outplanes = 256 if outplanes == None else outplanes | |
self.layer3 = self._make_layer(block, self.outplanes, layers[2], stride=2, groups=groups) | |
# self.outplanes = 512 if outplanes == None else outplanes | |
# self.layer4 = self._make_layer(block, self.outplanes, layers[3], stride=2, groups=groups) | |
self.avg_pooling = nn.AdaptiveAvgPool2d(1) | |
# self.tklr = TokenLearner(S=n_token) | |
def _make_layer(self, block, planes, blocks, stride=1, groups=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d( | |
self.inplanes * groups, | |
planes * block.expansion * groups, | |
kernel_size=1, | |
stride=stride, | |
bias=False, | |
groups=groups | |
), | |
nn.BatchNorm2d(planes * block.expansion * groups, momentum=BN_MOMENTUM), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample, groups=groups)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes, groups=groups)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = self.layer3(x) | |
# x = self.layer4(x) | |
# x = self.avg_pooling(x) | |
# x_g = self.tklr(x.permute(0, 2, 3, 1).contiguous()) | |
# x_g = x_g.reshape(x.shape[0], -1) | |
return x, None | |