File size: 30,053 Bytes
ae2a0be
28ce5bd
ae2a0be
 
07d53b8
 
28ce5bd
ae2a0be
28ce5bd
7d2e24b
28ce5bd
c7d597c
28ce5bd
 
 
 
 
c828a61
 
 
28ce5bd
 
c7d597c
 
28ce5bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
652d352
 
 
 
 
e1cb70c
 
 
652d352
 
 
 
 
 
 
ae2a0be
 
 
c828a61
 
 
 
 
 
 
 
ae2a0be
c828a61
 
ae2a0be
c828a61
 
 
 
 
 
 
 
ae2a0be
c828a61
 
 
652d352
 
ae2a0be
 
 
 
 
 
c828a61
e1cb70c
 
 
 
 
28ce5bd
ae2a0be
 
 
28ce5bd
ae2a0be
c828a61
 
 
28ce5bd
 
 
c7d597c
28ce5bd
 
 
 
 
 
 
 
 
 
652d352
 
 
e1cb70c
652d352
 
 
28ce5bd
 
 
 
 
 
 
c828a61
 
 
 
 
 
 
 
 
 
 
 
28ce5bd
 
 
 
 
 
 
c828a61
 
 
 
 
 
 
 
28ce5bd
 
 
 
 
 
 
c828a61
 
 
28ce5bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c828a61
28ce5bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4766c77
28ce5bd
 
 
c828a61
 
 
 
 
 
28ce5bd
c7d597c
 
 
 
28ce5bd
 
c7d597c
c828a61
 
 
 
 
 
28ce5bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4766c77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6043033
4766c77
7d2e24b
4766c77
 
 
 
 
7d2e24b
 
4766c77
6043033
4766c77
6043033
4766c77
 
 
 
1b9e070
c828a61
ae2a0be
 
 
 
 
 
 
 
c828a61
b2eff28
ae2a0be
 
b2eff28
c828a61
 
 
 
 
 
ae2a0be
c828a61
 
b2eff28
 
 
 
1b9e070
ae2a0be
1b9e070
 
ae2a0be
1b9e070
 
 
 
7d2e24b
c828a61
ae2a0be
 
 
 
 
 
 
 
 
c828a61
28ce5bd
 
 
 
 
 
 
 
 
b2eff28
28ce5bd
 
c828a61
 
 
 
 
 
 
ae2a0be
c828a61
 
ae2a0be
4766c77
7291007
 
 
28ce5bd
4766c77
28ce5bd
 
c828a61
 
 
4766c77
c828a61
7d2e24b
 
4766c77
c828a61
4766c77
28ce5bd
c828a61
28ce5bd
 
c828a61
28ce5bd
 
 
c828a61
 
 
28ce5bd
 
c828a61
 
 
28ce5bd
 
c828a61
 
 
28ce5bd
7291007
28ce5bd
7291007
 
 
 
28ce5bd
 
 
 
b2eff28
 
c828a61
b2eff28
 
 
 
 
 
 
 
 
 
 
 
c828a61
 
 
b2eff28
 
 
 
 
 
 
 
 
 
 
 
c828a61
b2eff28
 
 
 
 
 
 
 
 
 
 
 
c828a61
b2eff28
 
 
 
 
 
 
 
 
 
 
 
28ce5bd
c828a61
 
 
 
 
 
 
 
 
28ce5bd
 
 
c828a61
28ce5bd
c828a61
28ce5bd
c828a61
28ce5bd
 
 
 
c828a61
 
 
28ce5bd
 
 
 
 
 
 
 
c828a61
 
 
 
 
 
 
 
 
b2eff28
c828a61
28ce5bd
b2eff28
28ce5bd
 
1b9e070
ae2a0be
1b9e070
ae2a0be
 
 
e1cb70c
1b9e070
 
 
 
 
 
652d352
 
1b9e070
 
 
 
 
 
e1cb70c
1b9e070
 
 
 
28ce5bd
 
 
652d352
28ce5bd
 
 
 
 
 
652d352
28ce5bd
b2eff28
28ce5bd
 
 
 
 
 
652d352
28ce5bd
 
652d352
 
c828a61
 
 
 
e1cb70c
b2eff28
652d352
b2eff28
652d352
b2eff28
652d352
b2eff28
ae2a0be
 
 
 
35cbe8f
 
ae2a0be
 
 
35cbe8f
ae2a0be
 
 
 
 
35cbe8f
ae2a0be
 
 
 
 
 
35cbe8f
 
ae2a0be
 
 
 
 
 
 
 
 
 
 
 
 
 
35cbe8f
ae2a0be
 
 
 
 
 
 
 
 
 
 
 
 
 
35cbe8f
ae2a0be
 
 
 
 
 
 
 
 
 
 
 
 
 
35cbe8f
 
ae2a0be
 
 
 
 
35cbe8f
 
 
 
ae2a0be
 
 
35cbe8f
 
 
 
 
 
ae2a0be
 
652d352
e1cb70c
 
 
 
ae2a0be
 
 
 
 
 
 
 
 
 
e1cb70c
ae2a0be
 
e1cb70c
ae2a0be
 
 
35cbe8f
 
ae2a0be
 
 
35cbe8f
ae2a0be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35cbe8f
 
ae2a0be
 
 
 
 
35cbe8f
 
 
 
 
ae2a0be
 
652d352
e1cb70c
 
 
ae2a0be
 
 
 
 
e1cb70c
ae2a0be
 
1b9e070
07d53b8
ae2a0be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b9e070
c828a61
 
 
 
 
 
 
 
 
 
ae2a0be
c828a61
 
 
 
 
 
 
 
 
b2eff28
c828a61
 
ae2a0be
c828a61
 
1b9e070
b2eff28
c7d597c
 
 
 
b2eff28
c7d597c
 
b2eff28
28ce5bd
 
 
 
 
ae2a0be
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
# Gradio YOLOv8 Det v1.3.1
# 创建人:曾逸夫
# 创建时间:2024-01-03
# pip install gradio>=4.12.0
# python gradio_yolov8_det_v1.py


import __init__
import argparse
import csv
import random
import sys
from collections import Counter
from pathlib import Path

import cv2
import gradio as gr
from gradio_imageslider import ImageSlider
import tempfile
import uuid
import numpy as np
from matplotlib import font_manager
from ultralytics import YOLO

ROOT_PATH = sys.path[0]  # 项目根目录

# --------------------- 字体库 ---------------------
SimSun_path = f"{ROOT_PATH}/fonts/SimSun.ttf"  # 宋体文件路径
TimesNesRoman_path = f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"  # 新罗马字体文件路径
# 宋体
SimSun = font_manager.FontProperties(fname=SimSun_path, size=12)
# 新罗马字体
TimesNesRoman = font_manager.FontProperties(fname=TimesNesRoman_path, size=12)

import yaml
from PIL import Image, ImageDraw, ImageFont

from util.fonts_opt import is_fonts

# 文件后缀
suffix_list = [".csv", ".yaml"]

# 字体大小
FONTSIZE = 25

# 目标尺寸
obj_style = ["小目标", "中目标", "大目标"]

GYD_TITLE = """
<p align='center'><a href='https://gitee.com/CV_Lab/gradio-yolov8-det'>
<img src='https://pycver.gitee.io/ows-pics/imgs/gradio_yolov8_det_logo.png' alt='Simple Icons' ></a>
<p align='center'>基于 Gradio 的 YOLOv8 通用计算机视觉演示系统</p><p align='center'>集成目标检测、图像分割和图像分类于一体,可自定义检测模型</p>
</p>
<p align='center'>
<a href='https://gitee.com/CV_Lab/gradio-yolov8-det'><img src='https://gitee.com/CV_Lab/gradio-yolov8-det/widgets/widget_6.svg' alt='Fork me on Gitee'></img></a>
</p>
"""

GYD_SUB_TITLE = """
作者:曾逸夫,Gitee:https://gitee.com/PyCVer ,Github:https://github.com/Zengyf-CVer
"""

EXAMPLES_DET = [
    ["./img_examples/bus.jpg", "yolov8s", "cpu", 640, 0.6, 0.5, 100, [], "所有尺寸"],
    ["./img_examples/giraffe.jpg", "yolov8l", "cpu", 320, 0.5, 0.45, 100, [], "所有尺寸"],
    ["./img_examples/zidane.jpg", "yolov8m", "cpu", 640, 0.6, 0.5, 100, [], "所有尺寸"],
    [
        "./img_examples/Millenial-at-work.jpg",
        "yolov8x",
        "cpu",
        1280,
        0.5,
        0.5,
        100,
        [],
        "所有尺寸",
    ],
    ["./img_examples/bus.jpg", "yolov8s-seg", "cpu", 640, 0.6, 0.5, 100, [], "所有尺寸"],
    [
        "./img_examples/Millenial-at-work.jpg",
        "yolov8x-seg",
        "cpu",
        1280,
        0.5,
        0.5,
        100,
        [],
        "所有尺寸",
    ],
]

EXAMPLES_CLAS = [
    ["./img_examples/img_clas/ILSVRC2012_val_00000008.JPEG", "cpu", "yolov8s-cls"],
    ["./img_examples/img_clas/ILSVRC2012_val_00000018.JPEG", "cpu", "yolov8l-cls"],
    ["./img_examples/img_clas/ILSVRC2012_val_00000023.JPEG", "cpu", "yolov8m-cls"],
    ["./img_examples/img_clas/ILSVRC2012_val_00000067.JPEG", "cpu", "yolov8m-cls"],
    ["./img_examples/img_clas/ILSVRC2012_val_00000077.JPEG", "cpu", "yolov8m-cls"],
    ["./img_examples/img_clas/ILSVRC2012_val_00000247.JPEG", "cpu", "yolov8m-cls"],
]

GYD_CSS = """#disp_image {
        text-align: center; /* Horizontally center the content */
    }"""


custom_css = "./gyd_style.css"


def parse_args(known=False):
    parser = argparse.ArgumentParser(description=__init__.__version__)
    parser.add_argument(
        "--model_name", "-mn", default="yolov8s", type=str, help="model name"
    )
    parser.add_argument(
        "--model_cfg",
        "-mc",
        default="./model_config/model_name_all.yaml",
        type=str,
        help="model config",
    )
    parser.add_argument(
        "--cls_name",
        "-cls",
        default="./cls_name/cls_name_zh.yaml",
        type=str,
        help="cls name",
    )
    parser.add_argument(
        "--cls_imgnet_name",
        "-cin",
        default="./cls_name/cls_imagenet_name_zh.yaml",
        type=str,
        help="cls ImageNet name",
    )
    parser.add_argument(
        "--nms_conf",
        "-conf",
        default=0.5,
        type=float,
        help="model NMS confidence threshold",
    )
    parser.add_argument(
        "--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold"
    )
    parser.add_argument(
        "--inference_size", "-isz", default=640, type=int, help="model inference size"
    )
    parser.add_argument(
        "--max_detnum", "-mdn", default=50, type=float, help="model max det num"
    )
    parser.add_argument(
        "--slider_step", "-ss", default=0.05, type=float, help="slider step"
    )
    parser.add_argument(
        "--is_login",
        "-isl",
        action="store_true",
        default=False,
        help="is login",
    )
    parser.add_argument(
        "--usr_pwd",
        "-up",
        nargs="+",
        type=str,
        default=["admin", "admin"],
        help="user & password for login",
    )
    parser.add_argument(
        "--is_share",
        "-is",
        action="store_true",
        default=False,
        help="is login",
    )
    parser.add_argument(
        "--server_port", "-sp", default=7860, type=int, help="server port"
    )

    args = parser.parse_known_args()[0] if known else parser.parse_args()
    return args


# yaml文件解析
def yaml_parse(file_path):
    return yaml.safe_load(open(file_path, encoding="utf-8").read())


# yaml csv 文件解析
def yaml_csv(file_path, file_tag):
    file_suffix = Path(file_path).suffix
    if file_suffix == suffix_list[0]:
        # 模型名称
        file_names = [i[0] for i in list(csv.reader(open(file_path)))]  # csv版
    elif file_suffix == suffix_list[1]:
        # 模型名称
        file_names = yaml_parse(file_path).get(file_tag)  # yaml版
    else:
        print(f"{file_path}格式不正确!程序退出!")
        sys.exit()

    return file_names


# 检查网络连接
def check_online():
    # 参考:https://github.com/ultralytics/yolov5/blob/master/utils/general.py
    # Check internet connectivity
    import socket

    try:
        socket.create_connection(("1.1.1.1", 443), 5)  # check host accessibility
        return True
    except OSError:
        return False


# 标签和边界框颜色设置
def color_set(cls_num):
    color_list = []
    for i in range(cls_num):
        color = tuple(np.random.choice(range(256), size=3))
        color_list.append(color)

    return color_list


# 随机生成浅色系或者深色系
def random_color(cls_num, is_light=True):
    color_list = []
    for i in range(cls_num):
        color = (
            random.randint(0, 127) + int(is_light) * 128,
            random.randint(0, 127) + int(is_light) * 128,
            random.randint(0, 127) + int(is_light) * 128,
        )
        color_list.append(color)

    return color_list


# 检测绘制
def pil_draw(img, score_l, bbox_l, cls_l, cls_index_l, textFont, color_list):
    img_pil = ImageDraw.Draw(img)
    id = 0

    for score, (xmin, ymin, xmax, ymax), label, cls_index in zip(
        score_l, bbox_l, cls_l, cls_index_l
    ):
        img_pil.rectangle(
            [xmin, ymin, xmax, ymax], fill=None, outline=color_list[cls_index], width=2
        )  # 边界框
        countdown_msg = f"{id}-{label} {score:.2f}"
        # text_w, text_h = textFont.getsize(countdown_msg)  # 标签尺寸 pillow 9.5.0
        # left, top, left + width, top + height
        # 标签尺寸 pillow 10.0.0
        text_xmin, text_ymin, text_xmax, text_ymax = textFont.getbbox(countdown_msg)
        # 标签背景
        img_pil.rectangle(
            # (xmin, ymin, xmin + text_w, ymin + text_h), # pillow 9.5.0
            (
                xmin,
                ymin,
                xmin + text_xmax - text_xmin,
                ymin + text_ymax - text_ymin,
            ),  # pillow 10.0.0
            fill=color_list[cls_index],
            outline=color_list[cls_index],
        )

        # 标签
        img_pil.multiline_text(
            (xmin, ymin),
            countdown_msg,
            fill=(0, 0, 0),
            font=textFont,
            align="center",
        )

        id += 1

    return img


# 绘制多边形
def polygon_drawing(img_mask, canvas, color_seg):
    # ------- RGB转BGR -------
    color_seg = list(color_seg)
    color_seg[0], color_seg[2] = color_seg[2], color_seg[0]
    color_seg = tuple(color_seg)
    # 定义多边形的顶点
    pts = np.array(img_mask, dtype=np.int32)

    # 多边形绘制
    cv2.drawContours(canvas, [pts], -1, color_seg, thickness=-1)


# 输出分割结果
def seg_output(img_path, seg_mask_list, color_list, cls_list):
    img = cv2.imread(img_path)
    img_c = img.copy()

    # w, h = img.shape[1], img.shape[0]

    # 获取分割坐标
    for seg_mask, cls_index in zip(seg_mask_list, cls_list):
        img_mask = []
        for i in range(len(seg_mask)):
            # img_mask.append([seg_mask[i][0] * w, seg_mask[i][1] * h])
            img_mask.append([seg_mask[i][0], seg_mask[i][1]])

        polygon_drawing(img_mask, img_c, color_list[int(cls_index)])  # 绘制分割图形

    img_mask_merge = cv2.addWeighted(img, 0.3, img_c, 0.7, 0)  # 合并图像

    return img_mask_merge


# 目标检测和图像分割模型加载
def model_det_loading(
    img_path,
    device_opt,
    conf,
    iou,
    infer_size,
    max_det,
    inputs_cls_name,
    yolo_model="yolov8n.pt",
):
    model = YOLO(yolo_model)
    if inputs_cls_name == []:
        inputs_cls_name = None

    results = model(
        source=img_path,
        device=device_opt,
        imgsz=infer_size,
        conf=conf,
        iou=iou,
        classes=inputs_cls_name,
        max_det=max_det,
    )
    results = list(results)[0]
    return results


# 图像分类模型加载
def model_cls_loading(img_path, device_opt, yolo_model="yolov8s-cls.pt"):
    model = YOLO(yolo_model)

    results = model(source=img_path, device=device_opt)
    results = list(results)[0]
    return results


# YOLOv8图片检测函数
def yolo_det_img(
    img_path,
    model_name,
    device_opt,
    infer_size,
    conf,
    iou,
    max_det,
    inputs_cls_name,
    obj_size,
):
    global model, model_name_tmp, device_tmp

    s_obj, m_obj, l_obj = 0, 0, 0

    area_obj_all = []  # 目标面积

    score_det_stat = []  # 置信度统计
    bbox_det_stat = []  # 边界框统计
    cls_det_stat = []  # 类别数量统计
    cls_index_det_stat = []  # 1

    # 模型加载
    predict_results = model_det_loading(
        img_path,
        device_opt,
        conf,
        iou,
        infer_size,
        max_det,
        inputs_cls_name,
        yolo_model=f"{model_name}.pt",
    )

    # 检测参数
    xyxy_list = predict_results.boxes.xyxy.cpu().numpy().tolist()
    conf_list = predict_results.boxes.conf.cpu().numpy().tolist()
    cls_list = predict_results.boxes.cls.cpu().numpy().tolist()

    # 颜色列表
    color_list = random_color(len(model_cls_name_cp), True)

    img = Image.open(img_path)
    img_cp = img.copy()

    # 图像分割
    if model_name[-3:] == "seg":
        # masks_list = predict_results.masks.xyn
        masks_list = predict_results.masks.xy
        img_mask_merge = seg_output(img_path, masks_list, color_list, cls_list)
        img = Image.fromarray(cv2.cvtColor(img_mask_merge, cv2.COLOR_BGRA2RGB))

    # 判断检测对象是否为空
    if xyxy_list != []:
        # ---------------- 加载字体 ----------------
        yaml_index = cls_name.index(".yaml")
        cls_name_lang = cls_name[yaml_index - 2 : yaml_index]

        if cls_name_lang == "zh":
            # 中文
            textFont = ImageFont.truetype(
                str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE
            )
        elif cls_name_lang in ["en", "ru", "es", "ar"]:
            # 英文、俄语、西班牙语、阿拉伯语
            textFont = ImageFont.truetype(
                str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE
            )
        elif cls_name_lang == "ko":
            # 韩语
            textFont = ImageFont.truetype(
                str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE
            )

        for i in range(len(xyxy_list)):
            # ------------ 边框坐标 ------------
            x0 = int(xyxy_list[i][0])
            y0 = int(xyxy_list[i][1])
            x1 = int(xyxy_list[i][2])
            y1 = int(xyxy_list[i][3])

            # ---------- 加入目标尺寸 ----------
            w_obj = x1 - x0
            h_obj = y1 - y0
            area_obj = w_obj * h_obj  # 目标尺寸

            if obj_size == obj_style[0] and area_obj > 0 and area_obj <= 32**2:
                obj_cls_index = int(cls_list[i])  # 类别索引
                cls_index_det_stat.append(obj_cls_index)

                obj_cls = model_cls_name_cp[obj_cls_index]  # 类别
                cls_det_stat.append(obj_cls)

                bbox_det_stat.append((x0, y0, x1, y1))

                conf = float(conf_list[i])  # 置信度
                score_det_stat.append(conf)

                area_obj_all.append(area_obj)
            elif (
                obj_size == obj_style[1] and area_obj > 32**2 and area_obj <= 96**2
            ):
                obj_cls_index = int(cls_list[i])  # 类别索引
                cls_index_det_stat.append(obj_cls_index)

                obj_cls = model_cls_name_cp[obj_cls_index]  # 类别
                cls_det_stat.append(obj_cls)

                bbox_det_stat.append((x0, y0, x1, y1))

                conf = float(conf_list[i])  # 置信度
                score_det_stat.append(conf)

                area_obj_all.append(area_obj)
            elif obj_size == obj_style[2] and area_obj > 96**2:
                obj_cls_index = int(cls_list[i])  # 类别索引
                cls_index_det_stat.append(obj_cls_index)

                obj_cls = model_cls_name_cp[obj_cls_index]  # 类别
                cls_det_stat.append(obj_cls)

                bbox_det_stat.append((x0, y0, x1, y1))

                conf = float(conf_list[i])  # 置信度
                score_det_stat.append(conf)

                area_obj_all.append(area_obj)
            elif obj_size == "所有尺寸":
                obj_cls_index = int(cls_list[i])  # 类别索引
                cls_index_det_stat.append(obj_cls_index)

                obj_cls = model_cls_name_cp[obj_cls_index]  # 类别
                cls_det_stat.append(obj_cls)

                bbox_det_stat.append((x0, y0, x1, y1))

                conf = float(conf_list[i])  # 置信度
                score_det_stat.append(conf)

                area_obj_all.append(area_obj)

        det_img = pil_draw(
            img,
            score_det_stat,
            bbox_det_stat,
            cls_det_stat,
            cls_index_det_stat,
            textFont,
            color_list,
        )

        # -------------- 目标尺寸计算 --------------
        for i in range(len(area_obj_all)):
            if 0 < area_obj_all[i] <= 32**2:
                s_obj = s_obj + 1
            elif 32**2 < area_obj_all[i] <= 96**2:
                m_obj = m_obj + 1
            elif area_obj_all[i] > 96**2:
                l_obj = l_obj + 1

        sml_obj_total = s_obj + m_obj + l_obj
        objSize_dict = {}
        objSize_dict = {
            obj_style[i]: [s_obj, m_obj, l_obj][i] / sml_obj_total for i in range(3)
        }

        # ------------ 类别统计 ------------
        clsRatio_dict = {}
        clsDet_dict = Counter(cls_det_stat)
        clsDet_dict_sum = sum(clsDet_dict.values())
        for k, v in clsDet_dict.items():
            clsRatio_dict[k] = v / clsDet_dict_sum

        images = (det_img, img_cp)
        images_names = ("det", "raw")
        images_path = tempfile.mkdtemp()
        images_paths = []
        uuid_name = uuid.uuid4()
        for image, image_name in zip(images, images_names):
            image.save(images_path + f"/img_{uuid_name}_{image_name}.jpg")
            images_paths.append(images_path + f"/img_{uuid_name}_{image_name}.jpg")

        gr.Info("图片检测成功!")
        return (det_img, img_cp), images_paths, objSize_dict, clsRatio_dict
    else:
        raise gr.Error("图片检测失败!")


# YOLOv8图片分类函数
def yolo_cls_img(img_path, device_opt, model_name):
    # 模型加载
    predict_results = model_cls_loading(
        img_path, device_opt, yolo_model=f"{model_name}.pt"
    )

    det_img = Image.open(img_path)
    clas_ratio_list = predict_results.probs.top5conf.tolist()
    clas_index_list = predict_results.probs.top5

    clas_name_list = []
    for i in clas_index_list:
        # clas_name_list.append(predict_results.names[i])
        clas_name_list.append(model_cls_imagenet_name_cp[i])

    clsRatio_dict = {}
    index_cls = 0
    clsDet_dict = Counter(clas_name_list)
    for k, v in clsDet_dict.items():
        clsRatio_dict[k] = clas_ratio_list[index_cls]
        index_cls += 1

    return det_img, clsRatio_dict


def main(args):
    gr.close_all()

    global model_cls_name_cp, model_cls_imagenet_name_cp, cls_name

    nms_conf = args.nms_conf
    nms_iou = args.nms_iou
    model_name = args.model_name
    model_cfg = args.model_cfg
    cls_name = args.cls_name
    cls_imagenet_name = args.cls_imgnet_name  # ImageNet类别
    inference_size = args.inference_size
    max_detnum = args.max_detnum
    slider_step = args.slider_step

    is_fonts(f"{ROOT_PATH}/fonts")  # 检查字体文件

    model_names = yaml_csv(model_cfg, "model_names")  # 模型名称
    model_cls_name = yaml_csv(cls_name, "model_cls_name")  # 类别名称
    model_cls_imagenet_name = yaml_csv(cls_imagenet_name, "model_cls_name")  # 类别名称

    model_cls_name_cp = model_cls_name.copy()  # 类别名称
    model_cls_imagenet_name_cp = model_cls_imagenet_name.copy()  # 类别名称

    custom_theme = gr.themes.Soft(primary_hue="blue").set(
        button_secondary_background_fill="*neutral_100",
        button_secondary_background_fill_hover="*neutral_200",
    )

    # ------------ Gradio Blocks ------------
    with gr.Blocks(theme=custom_theme, css=custom_css) as gyd:
        with gr.Row():
            gr.Markdown(GYD_TITLE)
        with gr.Row():
            gr.Markdown(GYD_SUB_TITLE)
        with gr.Row():
            with gr.Tabs():
                with gr.TabItem("目标检测与图像分割"):
                    with gr.Row():
                        with gr.Group(elem_id="show_box"):
                            with gr.Column(scale=1):
                                with gr.Row():
                                    inputs_img = gr.Image(
                                        image_mode="RGB", type="filepath", label="原始图片"
                                    )
                                with gr.Row():
                                    device_opt = gr.Radio(
                                        choices=["cpu", 0, 1, 2, 3],
                                        value="cpu",
                                        label="设备",
                                    )
                                with gr.Row():
                                    inputs_model = gr.Dropdown(
                                        choices=model_names,
                                        value=model_name,
                                        type="value",
                                        label="模型",
                                    )
                                with gr.Accordion("高级设置", open=True):
                                    with gr.Row():
                                        inputs_size = gr.Slider(
                                            320,
                                            1600,
                                            step=1,
                                            value=inference_size,
                                            label="推理尺寸",
                                        )
                                        max_det = gr.Slider(
                                            1,
                                            1000,
                                            step=1,
                                            value=max_detnum,
                                            label="最大检测数",
                                        )
                                    with gr.Row():
                                        input_conf = gr.Slider(
                                            0,
                                            1,
                                            step=slider_step,
                                            value=nms_conf,
                                            label="置信度阈值",
                                        )
                                        inputs_iou = gr.Slider(
                                            0,
                                            1,
                                            step=slider_step,
                                            value=nms_iou,
                                            label="IoU 阈值",
                                        )
                                    with gr.Row():
                                        inputs_cls_name = gr.Dropdown(
                                            choices=model_cls_name_cp,
                                            value=[],
                                            multiselect=True,
                                            allow_custom_value=True,
                                            type="index",
                                            label="类别选择",
                                        )
                                    with gr.Row():
                                        obj_size = gr.Radio(
                                            choices=["所有尺寸", "小目标", "中目标", "大目标"],
                                            value="所有尺寸",
                                            label="目标尺寸",
                                        )
                                with gr.Row():
                                    gr.ClearButton(inputs_img, value="清除")
                                    det_btn_img = gr.Button(
                                        value="检测", variant="primary"
                                    )

                        with gr.Group(elem_id="show_box"):
                            with gr.Column(scale=1):
                                # with gr.Row():
                                #     outputs_img = gr.Image(type="pil", label="检测图片")
                                with gr.Row():
                                    outputs_img_slider = ImageSlider(
                                        position=0.5, label="检测图片"
                                    )
                                with gr.Row():
                                    outputs_imgfiles = gr.Files(label="图片下载")
                                with gr.Row():
                                    outputs_objSize = gr.Label(label="目标尺寸占比统计")
                                with gr.Row():
                                    outputs_clsSize = gr.Label(label="类别检测占比统计")

                    with gr.Group(elem_id="show_box"):
                        with gr.Row():
                            gr.Examples(
                                examples=EXAMPLES_DET,
                                fn=yolo_det_img,
                                inputs=[
                                    inputs_img,
                                    inputs_model,
                                    device_opt,
                                    inputs_size,
                                    input_conf,
                                    inputs_iou,
                                    max_det,
                                    inputs_cls_name,
                                    obj_size,
                                ],
                                # outputs=[outputs_img, outputs_objSize, outputs_clsSize],
                                cache_examples=False,
                            )

                with gr.TabItem("图像分类"):
                    with gr.Row():
                        with gr.Group(elem_id="show_box"):
                            with gr.Column(scale=1):
                                with gr.Row():
                                    inputs_img_cls = gr.Image(
                                        image_mode="RGB", type="filepath", label="原始图片"
                                    )
                                with gr.Row():
                                    device_opt_cls = gr.Radio(
                                        choices=["cpu", "0", "1", "2", "3"],
                                        value="cpu",
                                        label="设备",
                                    )
                                with gr.Row():
                                    inputs_model_cls = gr.Dropdown(
                                        choices=[
                                            "yolov8n-cls",
                                            "yolov8s-cls",
                                            "yolov8l-cls",
                                            "yolov8m-cls",
                                            "yolov8x-cls",
                                        ],
                                        value="yolov8s-cls",
                                        type="value",
                                        label="模型",
                                    )
                                with gr.Row():
                                    gr.ClearButton(inputs_img, value="清除")
                                    det_btn_img_cls = gr.Button(
                                        value="检测", variant="primary"
                                    )

                        with gr.Group(elem_id="show_box"):
                            with gr.Column(scale=1):
                                with gr.Row():
                                    outputs_img_cls = gr.Image(type="pil", label="检测图片")
                                with gr.Row():
                                    outputs_ratio_cls = gr.Label(label="图像分类结果")

                    with gr.Group(elem_id="show_box"):
                        with gr.Row():
                            gr.Examples(
                                examples=EXAMPLES_CLAS,
                                fn=yolo_cls_img,
                                inputs=[
                                    inputs_img_cls,
                                    device_opt_cls,
                                    inputs_model_cls,
                                ],
                                # outputs=[outputs_img_cls, outputs_ratio_cls],
                                cache_examples=False,
                            )

        with gr.Accordion("Gradio YOLOv8 Det 安装与使用教程"):
            with gr.Group(elem_id="show_box"):
                gr.Markdown(
                    """## Gradio YOLOv8 Det 安装与使用教程
                ```shell
                conda create -n yolo python==3.8
                conda activate yolo # 进入环境
                git clone https://gitee.com/CV_Lab/gradio-yolov8-det.git
                cd gradio-yolov8-det
                pip install -r ./requirements.txt -U
                ```
                ```shell
                # 共享模式
                python gradio_yolov8_det_v1.py -is # 在浏览器中以共享模式打开,https://**.gradio.app/
                # 自定义模型配置
                python gradio_yolov8_det_v1.py -mc ./model_config/model_name_all.yaml
                # 自定义下拉框默认模型名称
                python gradio_yolov8_det_v1.py -mn yolov8m
                # 自定义类别名称
                python gradio_yolov8_det_v1.py -cls ./cls_name/cls_name_zh.yaml  (目标检测与图像分割)
                python gradio_yolov8_det_v1.py -cin ./cls_name/cls_imgnet_name_zh.yaml  (图像分类)
                # 自定义NMS置信度阈值
                python gradio_yolov8_det_v1.py -conf 0.8
                # 自定义NMS IoU阈值
                python gradio_yolov8_det_v1.py -iou 0.5
                # 设置推理尺寸,默认为640
                python gradio_yolov8_det_v1.py -isz 320
                # 设置最大检测数,默认为50
                python gradio_yolov8_det_v1.py -mdn 100
                # 设置滑块步长,默认为0.05
                python gradio_yolov8_det_v1.py -ss 0.01
                ```
                """
                )

        det_btn_img.click(
            fn=yolo_det_img,
            inputs=[
                inputs_img,
                inputs_model,
                device_opt,
                inputs_size,
                input_conf,
                inputs_iou,
                max_det,
                inputs_cls_name,
                obj_size,
            ],
            outputs=[
                outputs_img_slider,
                outputs_imgfiles,
                outputs_objSize,
                outputs_clsSize,
            ],
        )

        det_btn_img_cls.click(
            fn=yolo_cls_img,
            inputs=[inputs_img_cls, device_opt_cls, inputs_model_cls],
            outputs=[outputs_img_cls, outputs_ratio_cls],
        )

    return gyd


if __name__ == "__main__":
    args = parse_args()
    gyd = main(args)
    is_share = args.is_share

    gyd.queue().launch(
        inbrowser=True,  # 自动打开默认浏览器
        share=is_share,  # 项目共享,其他设备可以访问
        favicon_path="./icon/logo.ico",  # 网页图标
        show_error=True,  # 在浏览器控制台中显示错误信息
        quiet=True,  # 禁止大多数打印语句
    )