File size: 4,484 Bytes
ae29df4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import torch.nn as nn
import torch
import numpy as np
import torch.nn.functional as F
import math
from torchlibrosa.stft import magphase
def init_layer(layer):
"""Initialize a Linear or Convolutional layer. """
nn.init.xavier_uniform_(layer.weight)
if hasattr(layer, "bias"):
if layer.bias is not None:
layer.bias.data.fill_(0.0)
def init_bn(bn):
"""Initialize a Batchnorm layer. """
bn.bias.data.fill_(0.0)
bn.weight.data.fill_(1.0)
def init_embedding(layer):
"""Initialize a Linear or Convolutional layer. """
nn.init.uniform_(layer.weight, -1., 1.)
if hasattr(layer, 'bias'):
if layer.bias is not None:
layer.bias.data.fill_(0.)
def init_gru(rnn):
"""Initialize a GRU layer. """
def _concat_init(tensor, init_funcs):
(length, fan_out) = tensor.shape
fan_in = length // len(init_funcs)
for (i, init_func) in enumerate(init_funcs):
init_func(tensor[i * fan_in : (i + 1) * fan_in, :])
def _inner_uniform(tensor):
fan_in = nn.init._calculate_correct_fan(tensor, "fan_in")
nn.init.uniform_(tensor, -math.sqrt(3 / fan_in), math.sqrt(3 / fan_in))
for i in range(rnn.num_layers):
_concat_init(
getattr(rnn, "weight_ih_l{}".format(i)),
[_inner_uniform, _inner_uniform, _inner_uniform],
)
torch.nn.init.constant_(getattr(rnn, "bias_ih_l{}".format(i)), 0)
_concat_init(
getattr(rnn, "weight_hh_l{}".format(i)),
[_inner_uniform, _inner_uniform, nn.init.orthogonal_],
)
torch.nn.init.constant_(getattr(rnn, "bias_hh_l{}".format(i)), 0)
def act(x, activation):
if activation == "relu":
return F.relu_(x)
elif activation == "leaky_relu":
return F.leaky_relu_(x, negative_slope=0.01)
elif activation == "swish":
return x * torch.sigmoid(x)
else:
raise Exception("Incorrect activation!")
class Base:
def __init__(self):
pass
def spectrogram(self, input, eps=0.):
(real, imag) = self.stft(input)
return torch.clamp(real ** 2 + imag ** 2, eps, np.inf) ** 0.5
def spectrogram_phase(self, input, eps=0.):
(real, imag) = self.stft(input)
mag = torch.clamp(real ** 2 + imag ** 2, eps, np.inf) ** 0.5
cos = real / mag
sin = imag / mag
return mag, cos, sin
def wav_to_spectrogram_phase(self, input, eps=1e-10):
"""Waveform to spectrogram.
Args:
input: (batch_size, segment_samples, channels_num)
Outputs:
output: (batch_size, channels_num, time_steps, freq_bins)
"""
sp_list = []
cos_list = []
sin_list = []
channels_num = input.shape[1]
for channel in range(channels_num):
mag, cos, sin = self.spectrogram_phase(input[:, channel, :], eps=eps)
sp_list.append(mag)
cos_list.append(cos)
sin_list.append(sin)
sps = torch.cat(sp_list, dim=1)
coss = torch.cat(cos_list, dim=1)
sins = torch.cat(sin_list, dim=1)
return sps, coss, sins
def wav_to_spectrogram(self, input, eps=0.):
"""Waveform to spectrogram.
Args:
input: (batch_size, segment_samples, channels_num)
Outputs:
output: (batch_size, channels_num, time_steps, freq_bins)
"""
sp_list = []
channels_num = input.shape[1]
for channel in range(channels_num):
sp_list.append(self.spectrogram(input[:, channel, :], eps=eps))
output = torch.cat(sp_list, dim=1)
return output
def spectrogram_to_wav(self, input, spectrogram, length=None):
"""Spectrogram to waveform.
Args:
input: (batch_size, segment_samples, channels_num)
spectrogram: (batch_size, channels_num, time_steps, freq_bins)
Outputs:
output: (batch_size, segment_samples, channels_num)
"""
channels_num = input.shape[1]
wav_list = []
for channel in range(channels_num):
(real, imag) = self.stft(input[:, channel, :])
(_, cos, sin) = magphase(real, imag)
wav_list.append(self.istft(spectrogram[:, channel : channel + 1, :, :] * cos,
spectrogram[:, channel : channel + 1, :, :] * sin, length))
output = torch.stack(wav_list, dim=1)
return output
|