anthonyrusso's picture
upload audiocraft
f1e9197
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import typing as tp
import torchaudio
import torch
from torch import nn
from einops import rearrange
from ...modules import NormConv2d
from .base import MultiDiscriminator, MultiDiscriminatorOutputType
def get_2d_padding(kernel_size: tp.Tuple[int, int], dilation: tp.Tuple[int, int] = (1, 1)):
return (((kernel_size[0] - 1) * dilation[0]) // 2, ((kernel_size[1] - 1) * dilation[1]) // 2)
class DiscriminatorSTFT(nn.Module):
"""STFT sub-discriminator.
Args:
filters (int): Number of filters in convolutions.
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
n_fft (int): Size of FFT for each scale.
hop_length (int): Length of hop between STFT windows for each scale.
kernel_size (tuple of int): Inner Conv2d kernel sizes.
stride (tuple of int): Inner Conv2d strides.
dilations (list of int): Inner Conv2d dilation on the time dimension.
win_length (int): Window size for each scale.
normalized (bool): Whether to normalize by magnitude after stft.
norm (str): Normalization method.
activation (str): Activation function.
activation_params (dict): Parameters to provide to the activation function.
growth (int): Growth factor for the filters.
"""
def __init__(self, filters: int, in_channels: int = 1, out_channels: int = 1,
n_fft: int = 1024, hop_length: int = 256, win_length: int = 1024, max_filters: int = 1024,
filters_scale: int = 1, kernel_size: tp.Tuple[int, int] = (3, 9), dilations: tp.List = [1, 2, 4],
stride: tp.Tuple[int, int] = (1, 2), normalized: bool = True, norm: str = 'weight_norm',
activation: str = 'LeakyReLU', activation_params: dict = {'negative_slope': 0.2}):
super().__init__()
assert len(kernel_size) == 2
assert len(stride) == 2
self.filters = filters
self.in_channels = in_channels
self.out_channels = out_channels
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
self.normalized = normalized
self.activation = getattr(torch.nn, activation)(**activation_params)
self.spec_transform = torchaudio.transforms.Spectrogram(
n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window_fn=torch.hann_window,
normalized=self.normalized, center=False, pad_mode=None, power=None)
spec_channels = 2 * self.in_channels
self.convs = nn.ModuleList()
self.convs.append(
NormConv2d(spec_channels, self.filters, kernel_size=kernel_size, padding=get_2d_padding(kernel_size))
)
in_chs = min(filters_scale * self.filters, max_filters)
for i, dilation in enumerate(dilations):
out_chs = min((filters_scale ** (i + 1)) * self.filters, max_filters)
self.convs.append(NormConv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride,
dilation=(dilation, 1), padding=get_2d_padding(kernel_size, (dilation, 1)),
norm=norm))
in_chs = out_chs
out_chs = min((filters_scale ** (len(dilations) + 1)) * self.filters, max_filters)
self.convs.append(NormConv2d(in_chs, out_chs, kernel_size=(kernel_size[0], kernel_size[0]),
padding=get_2d_padding((kernel_size[0], kernel_size[0])),
norm=norm))
self.conv_post = NormConv2d(out_chs, self.out_channels,
kernel_size=(kernel_size[0], kernel_size[0]),
padding=get_2d_padding((kernel_size[0], kernel_size[0])),
norm=norm)
def forward(self, x: torch.Tensor):
fmap = []
z = self.spec_transform(x) # [B, 2, Freq, Frames, 2]
z = torch.cat([z.real, z.imag], dim=1)
z = rearrange(z, 'b c w t -> b c t w')
for i, layer in enumerate(self.convs):
z = layer(z)
z = self.activation(z)
fmap.append(z)
z = self.conv_post(z)
return z, fmap
class MultiScaleSTFTDiscriminator(MultiDiscriminator):
"""Multi-Scale STFT (MS-STFT) discriminator.
Args:
filters (int): Number of filters in convolutions.
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
sep_channels (bool): Separate channels to distinct samples for stereo support.
n_ffts (Sequence[int]): Size of FFT for each scale.
hop_lengths (Sequence[int]): Length of hop between STFT windows for each scale.
win_lengths (Sequence[int]): Window size for each scale.
**kwargs: Additional args for STFTDiscriminator.
"""
def __init__(self, filters: int, in_channels: int = 1, out_channels: int = 1, sep_channels: bool = False,
n_ffts: tp.List[int] = [1024, 2048, 512], hop_lengths: tp.List[int] = [256, 512, 128],
win_lengths: tp.List[int] = [1024, 2048, 512], **kwargs):
super().__init__()
assert len(n_ffts) == len(hop_lengths) == len(win_lengths)
self.sep_channels = sep_channels
self.discriminators = nn.ModuleList([
DiscriminatorSTFT(filters, in_channels=in_channels, out_channels=out_channels,
n_fft=n_ffts[i], win_length=win_lengths[i], hop_length=hop_lengths[i], **kwargs)
for i in range(len(n_ffts))
])
@property
def num_discriminators(self):
return len(self.discriminators)
def _separate_channels(self, x: torch.Tensor) -> torch.Tensor:
B, C, T = x.shape
return x.view(-1, 1, T)
def forward(self, x: torch.Tensor) -> MultiDiscriminatorOutputType:
logits = []
fmaps = []
for disc in self.discriminators:
logit, fmap = disc(x)
logits.append(logit)
fmaps.append(fmap)
return logits, fmaps