Spaces:
Running
on
Zero
Running
on
Zero
import torch.nn as nn | |
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
from pathlib import Path | |
import cv2 | |
import trimesh | |
import nvdiffrast.torch as dr | |
from model.archs.decoders.shape_texture_net import TetTexNet | |
from model.archs.unet import UNetPP | |
from util.renderer import Renderer | |
from model.archs.mlp_head import SdfMlp, RgbMlp | |
import xatlas | |
class Dummy: | |
pass | |
class CRM(nn.Module): | |
def __init__(self, specs): | |
super(CRM, self).__init__() | |
self.specs = specs | |
# configs | |
input_specs = specs["Input"] | |
self.input = Dummy() | |
self.input.scale = input_specs['scale'] | |
self.input.resolution = input_specs['resolution'] | |
self.tet_grid_size = input_specs['tet_grid_size'] | |
self.camera_angle_num = input_specs['camera_angle_num'] | |
self.arch = Dummy() | |
self.arch.fea_concat = specs["ArchSpecs"]["fea_concat"] | |
self.arch.mlp_bias = specs["ArchSpecs"]["mlp_bias"] | |
self.dec = Dummy() | |
self.dec.c_dim = specs["DecoderSpecs"]["c_dim"] | |
self.dec.plane_resolution = specs["DecoderSpecs"]["plane_resolution"] | |
self.geo_type = specs["Train"].get("geo_type", "flex") # "dmtet" or "flex" | |
self.unet2 = UNetPP(in_channels=self.dec.c_dim) | |
mlp_chnl_s = 3 if self.arch.fea_concat else 1 # 3 for queried triplane feature concatenation | |
self.decoder = TetTexNet(plane_reso=self.dec.plane_resolution, fea_concat=self.arch.fea_concat) | |
if self.geo_type == "flex": | |
self.weightMlp = nn.Sequential( | |
nn.Linear(mlp_chnl_s * 32 * 8, 512), | |
nn.SiLU(), | |
nn.Linear(512, 21)) | |
self.sdfMlp = SdfMlp(mlp_chnl_s * 32, 512, bias=self.arch.mlp_bias) | |
self.rgbMlp = RgbMlp(mlp_chnl_s * 32, 512, bias=self.arch.mlp_bias) | |
# self.renderer = Renderer(tet_grid_size=self.tet_grid_size, camera_angle_num=self.camera_angle_num, | |
# scale=self.input.scale, geo_type = self.geo_type) | |
self.spob = True if specs['Pretrain']['mode'] is None else False # whether to add sphere | |
self.radius = specs['Pretrain']['radius'] # used when spob | |
self.denoising = True | |
from diffusers import DDIMScheduler | |
self.scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1-base", subfolder="scheduler") | |
def decode(self, data, triplane_feature2): | |
if self.geo_type == "flex": | |
tet_verts = self.renderer.flexicubes.verts.unsqueeze(0) | |
tet_indices = self.renderer.flexicubes.indices | |
dec_verts = self.decoder(triplane_feature2, tet_verts) | |
out = self.sdfMlp(dec_verts) | |
weight = None | |
if self.geo_type == "flex": | |
grid_feat = torch.index_select(input=dec_verts, index=self.renderer.flexicubes.indices.reshape(-1),dim=1) | |
grid_feat = grid_feat.reshape(dec_verts.shape[0], self.renderer.flexicubes.indices.shape[0], self.renderer.flexicubes.indices.shape[1] * dec_verts.shape[-1]) | |
weight = self.weightMlp(grid_feat) | |
weight = weight * 0.1 | |
pred_sdf, deformation = out[..., 0], out[..., 1:] | |
if self.spob: | |
pred_sdf = pred_sdf + self.radius - torch.sqrt((tet_verts**2).sum(-1)) | |
_, verts, faces = self.renderer(data, pred_sdf, deformation, tet_verts, tet_indices, weight= weight) | |
return verts[0].unsqueeze(0), faces[0].int() | |
def export_mesh(self, data, out_dir, tri_fea_2 = None): | |
verts = data['verts'] | |
faces = data['faces'] | |
dec_verts = self.decoder(tri_fea_2, verts.unsqueeze(0)) | |
colors = self.rgbMlp(dec_verts).squeeze().detach().cpu().numpy() | |
# Expect predicted colors value range from [-1, 1] | |
colors = (colors * 0.5 + 0.5).clip(0, 1) | |
verts = verts[..., [0, 2, 1]] | |
verts[..., 0]*= -1 | |
verts[..., 2]*= -1 | |
verts = verts.squeeze().cpu().numpy() | |
faces = faces[..., [2, 1, 0]][..., [0, 2, 1]]#[..., [1, 0, 2]] | |
faces = faces.squeeze().cpu().numpy()#faces[..., [2, 1, 0]].squeeze().cpu().numpy() | |
# export the final mesh | |
with torch.no_grad(): | |
mesh = trimesh.Trimesh(verts, faces, vertex_colors=colors, process=False) # important, process=True leads to seg fault... | |
mesh.export(f'{out_dir}.obj') | |
def export_mesh_wt_uv(self, ctx, data, out_dir, ind, device, res, tri_fea_2=None): | |
mesh_v = data['verts'].squeeze().cpu().numpy() | |
mesh_pos_idx = data['faces'].squeeze().cpu().numpy() | |
def interpolate(attr, rast, attr_idx, rast_db=None): | |
return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db, | |
diff_attrs=None if rast_db is None else 'all') | |
vmapping, indices, uvs = xatlas.parametrize(mesh_v, mesh_pos_idx) | |
mesh_v = torch.tensor(mesh_v, dtype=torch.float32, device=device) | |
mesh_pos_idx = torch.tensor(mesh_pos_idx, dtype=torch.int64, device=device) | |
# Convert to tensors | |
indices_int64 = indices.astype(np.uint64, casting='same_kind').view(np.int64) | |
uvs = torch.tensor(uvs, dtype=torch.float32, device=mesh_v.device) | |
mesh_tex_idx = torch.tensor(indices_int64, dtype=torch.int64, device=mesh_v.device) | |
# mesh_v_tex. ture | |
uv_clip = uvs[None, ...] * 2.0 - 1.0 | |
# pad to four component coordinate | |
uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[..., 0:1]), torch.ones_like(uv_clip[..., 0:1])), dim=-1) | |
# rasterize | |
rast, _ = dr.rasterize(ctx, uv_clip4, mesh_tex_idx.int(), res) | |
# Interpolate world space position | |
gb_pos, _ = interpolate(mesh_v[None, ...], rast, mesh_pos_idx.int()) | |
mask = rast[..., 3:4] > 0 | |
# return uvs, mesh_tex_idx, gb_pos, mask | |
gb_pos_unsqz = gb_pos.view(-1, 3) | |
mask_unsqz = mask.view(-1) | |
tex_unsqz = torch.zeros_like(gb_pos_unsqz) + 1 | |
gb_mask_pos = gb_pos_unsqz[mask_unsqz] | |
gb_mask_pos = gb_mask_pos[None, ] | |
with torch.no_grad(): | |
dec_verts = self.decoder(tri_fea_2, gb_mask_pos) | |
colors = self.rgbMlp(dec_verts).squeeze() | |
# Expect predicted colors value range from [-1, 1] | |
lo, hi = (-1, 1) | |
colors = (colors - lo) * (255 / (hi - lo)) | |
colors = colors.clip(0, 255) | |
tex_unsqz[mask_unsqz] = colors | |
tex = tex_unsqz.view(res + (3,)) | |
verts = mesh_v.squeeze().cpu().numpy() | |
faces = mesh_pos_idx[..., [2, 1, 0]].squeeze().cpu().numpy() | |
# faces = mesh_pos_idx | |
# faces = faces.detach().cpu().numpy() | |
# faces = faces[..., [2, 1, 0]] | |
indices = indices[..., [2, 1, 0]] | |
# xatlas.export(f"{out_dir}/{ind}.obj", verts[vmapping], indices, uvs) | |
matname = f'{out_dir}.mtl' | |
# matname = f'{out_dir}/{ind}.mtl' | |
fid = open(matname, 'w') | |
fid.write('newmtl material_0\n') | |
fid.write('Kd 1 1 1\n') | |
fid.write('Ka 1 1 1\n') | |
# fid.write('Ks 0 0 0\n') | |
fid.write('Ks 0.4 0.4 0.4\n') | |
fid.write('Ns 10\n') | |
fid.write('illum 2\n') | |
fid.write(f'map_Kd {out_dir.split("/")[-1]}.png\n') | |
fid.close() | |
fid = open(f'{out_dir}.obj', 'w') | |
# fid = open(f'{out_dir}/{ind}.obj', 'w') | |
fid.write('mtllib %s.mtl\n' % out_dir.split("/")[-1]) | |
for pidx, p in enumerate(verts): | |
pp = p | |
fid.write('v %f %f %f\n' % (pp[0], pp[2], - pp[1])) | |
for pidx, p in enumerate(uvs): | |
pp = p | |
fid.write('vt %f %f\n' % (pp[0], 1 - pp[1])) | |
fid.write('usemtl material_0\n') | |
for i, f in enumerate(faces): | |
f1 = f + 1 | |
f2 = indices[i] + 1 | |
fid.write('f %d/%d %d/%d %d/%d\n' % (f1[0], f2[0], f1[1], f2[1], f1[2], f2[2])) | |
fid.close() | |
img = np.asarray(tex.data.cpu().numpy(), dtype=np.float32) | |
mask = np.sum(img.astype(float), axis=-1, keepdims=True) | |
mask = (mask <= 3.0).astype(float) | |
kernel = np.ones((3, 3), 'uint8') | |
dilate_img = cv2.dilate(img, kernel, iterations=1) | |
img = img * (1 - mask) + dilate_img * mask | |
img = img.clip(0, 255).astype(np.uint8) | |
cv2.imwrite(f'{out_dir}.png', img[..., [2, 1, 0]]) | |
# cv2.imwrite(f'{out_dir}/{ind}.png', img[..., [2, 1, 0]]) | |