abdulrasool's picture
first commit
f6c6a41
from urlextract import URLExtract
from wordcloud import WordCloud
import pandas as pd
from collections import Counter
import emoji
import re
import numpy as np
import torch
extract = URLExtract()
def fetch_stats(selected_user,df):
if(selected_user!='Overall'):
df=df[df['user']==selected_user]
num_messages = df.shape[0]
words = []
for message in df['message']:
words.extend(message.split())
num_media_messages = df[df['message']=='<Media omitted>\n'].shape[0]
links=[]
for message in df['message']:
links.extend(extract.find_urls(message))
return num_messages, len(words), num_media_messages ,len(links)
def most_busy_users(df):
x = df['user'].value_counts()
x = x.head(min(10, len(x)))
new_df = round((df['user'].value_counts()/df.shape[0])*100,2).reset_index().rename(columns={'user':'name','count':'percent'})
return x,new_df
def create_wordcloud(selected_user,df):
f = open('stop_hinglish.txt', 'r')
stop_words = f.read()
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
temp = df[df['user'] != 'group_notification']
temp = temp[temp['message'] != '<Media omitted>\n']
def remove_stop_words(message):
y = []
for word in message.lower().split():
if word not in stop_words:
y.append(word)
return " ".join(y)
wc = WordCloud(width=500,height=500,min_font_size=10,background_color='white')
temp['message'] = temp['message'].apply(remove_stop_words)
df_wc = wc.generate(temp['message'].str.cat(sep=" "))
return df_wc
def most_common_words(selected_user,df):
f = open('stop_hinglish.txt','r')
stop_words = f.read()
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
temp = df[df['user'] != 'group_notification']
temp = temp[temp['message'] != '<Media omitted>\n']
words = []
for message in temp['message']:
for word in message.lower().split():
if (word not in stop_words):
for c in word:
if c not in emoji.UNICODE_EMOJI_ENGLISH:
words.append(word)
break
most_common_df = pd.DataFrame(Counter(words).most_common(20))
return most_common_df
def emoji_helper(selected_user,df):
if (selected_user != 'Overall'):
df = df[df['user'] == selected_user]
emojis=[]
for message in df['message']:
emojis.extend([c for c in message if c in emoji.UNICODE_EMOJI_ENGLISH])
emoji_df = pd.DataFrame(Counter(emojis).most_common(len(Counter(emojis))))
return emoji_df
def monthly_timeline(selected_user,df):
if (selected_user != 'Overall'):
df = df[df['user'] == selected_user]
timeline = df.groupby(['year','month_num','month']).count()['message'].reset_index()
time=[]
for i in range(timeline.shape[0]):
time.append(timeline['month'][i]+"-"+str(timeline['year'][i]))
timeline['time'] =time
return timeline
def daily_timeline(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
daily_timeline = df.groupby('only_date').count()['message'].reset_index()
return daily_timeline
def week_activity_map(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
return df['day_name'].value_counts()
def month_activity_map(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
return df['month'].value_counts()
def activity_heatmap(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
user_heatmap = df.pivot_table(index='day_name', columns='period', values='message', aggfunc='count').fillna(0)
return user_heatmap
def birth_dates(df):
birthdates = []
names = []
for i in range(df.shape[0]):
msg = df['message'][i].lower()
if (re.search('happy birthday', msg)):
if (re.findall('@[A-Za-z0-9]+', df['message'][i])):
users = re.findall('@[A-Za-z0-9]+', df['message'][i])
for user in users:
if user[1:] not in names:
names.append(user[1:])
birthdates.append(str(df['month'][i]) + " " + str(df['day'][i]))
return pd.DataFrame({'contacts':names,'birthdates':birthdates})
def sentiment_analysis(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
# sample code
from transformers import BertTokenizer, BertForSequenceClassification
tokenizer = BertTokenizer.from_pretrained("ganeshkharad/gk-hinglish-sentiment")
model = BertForSequenceClassification.from_pretrained("ganeshkharad/gk-hinglish-sentiment")
if df.shape[0]>600:
df=df.sample(n=600)
ans = []
for i in range(df.shape[0]):
encoded_input = tokenizer(df['message'].iloc[i], return_tensors='pt')
output = model(**encoded_input)
output = np.argmax(output.logits.detach().numpy())
if (output == 0):
ans.append('Negative-messages')
elif (output == 1):
ans.append('Neutral-messages')
else:
ans.append('Positive-messages')
# output contains 3 lables LABEL_0 = Negative ,LABEL_1 = Nuetral ,LABEL_2 = Positive
return pd.Series(Counter(ans)),df.shape[0]