financebot / app.py
abhyast123's picture
load the app with model
38cc304
from transformers import pipeline
import gradio as gr
#load the model directly
# Use a pipeline as a high-level helper
pipe = pipeline("text-classification", model="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis")
#run the application
demo=gr.Interface.from_pipeline(pipe)
demo.launch()
# import gradio as gr
# from transformers import AutoModelForSequenceClassification, AutoTokenizer
# import torch
# # Load the pre-trained model and tokenizer
# tokenizer = AutoTokenizer.from_pretrained("mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis")
# model = AutoModelForSequenceClassification.from_pretrained("mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis")
# # Define a function for sentiment analysis
# def predict_sentiment(text):
# # Tokenize the input text and prepare it to be used by the model
# inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
# # Forward pass through the model
# with torch.no_grad():
# outputs = model(**inputs)
# # Get the predicted probabilities and convert them to percentages
# probabilities = torch.softmax(outputs.logits, dim=1).squeeze().tolist()
# positive_percent = probabilities[2] * 100
# negative_percent = probabilities[0] * 100
# neutral_percent = probabilities[1] * 100
# # Construct the result dictionary
# result = {
# "Positive": round(positive_percent, 2),
# "Negative": round(negative_percent, 2),
# "Neutral": round(neutral_percent, 2)
# }
# return result
# # Define inputs and outputs directly without using gr.inputs or gr.outputs
# iface = gr.Interface(
# fn=predict_sentiment,
# inputs=gr.inputs.Textbox(lines=10, label="Enter financial statement"),
# outputs=gr.outputs.Label(num_top_classes=3, label="Sentiment Percentages"),
# title="Financial Statement Sentiment Analysis",
# description="Predict the sentiment percentages of a financial statement."
# )
# if __name__ == "__main__":
# iface.launch()