Spaces:
Running
Running
from transformers import pipeline | |
import gradio as gr | |
#load the model directly | |
# Use a pipeline as a high-level helper | |
pipe = pipeline("text-classification", model="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis") | |
#run the application | |
demo=gr.Interface.from_pipeline(pipe) | |
demo.launch() | |
# import gradio as gr | |
# from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
# import torch | |
# # Load the pre-trained model and tokenizer | |
# tokenizer = AutoTokenizer.from_pretrained("mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis") | |
# model = AutoModelForSequenceClassification.from_pretrained("mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis") | |
# # Define a function for sentiment analysis | |
# def predict_sentiment(text): | |
# # Tokenize the input text and prepare it to be used by the model | |
# inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) | |
# # Forward pass through the model | |
# with torch.no_grad(): | |
# outputs = model(**inputs) | |
# # Get the predicted probabilities and convert them to percentages | |
# probabilities = torch.softmax(outputs.logits, dim=1).squeeze().tolist() | |
# positive_percent = probabilities[2] * 100 | |
# negative_percent = probabilities[0] * 100 | |
# neutral_percent = probabilities[1] * 100 | |
# # Construct the result dictionary | |
# result = { | |
# "Positive": round(positive_percent, 2), | |
# "Negative": round(negative_percent, 2), | |
# "Neutral": round(neutral_percent, 2) | |
# } | |
# return result | |
# # Define inputs and outputs directly without using gr.inputs or gr.outputs | |
# iface = gr.Interface( | |
# fn=predict_sentiment, | |
# inputs=gr.inputs.Textbox(lines=10, label="Enter financial statement"), | |
# outputs=gr.outputs.Label(num_top_classes=3, label="Sentiment Percentages"), | |
# title="Financial Statement Sentiment Analysis", | |
# description="Predict the sentiment percentages of a financial statement." | |
# ) | |
# if __name__ == "__main__": | |
# iface.launch() | |