File size: 5,201 Bytes
b1d950f f244dfa 6ac1aaf 37bff96 aaa673b 37bff96 aaa673b 37bff96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import os
import subprocess
import glob
import matplotlib.pyplot as plt
import torch
import torchvision.transforms as T
import gradio as gr
from pytorch_lightning import seed_everything
import os
import requests
import csv
import spaces
def plot_feats(image, lr, hr):
from featup.util import pca, remove_axes
assert len(image.shape) == len(lr.shape) == len(hr.shape) == 3
seed_everything(0)
[lr_feats_pca, hr_feats_pca], _ = pca(
[lr.unsqueeze(0), hr.unsqueeze(0)], dim=9)
fig, ax = plt.subplots(3, 3, figsize=(15, 15))
ax[0, 0].imshow(image.permute(1, 2, 0).detach().cpu())
ax[1, 0].imshow(image.permute(1, 2, 0).detach().cpu())
ax[2, 0].imshow(image.permute(1, 2, 0).detach().cpu())
ax[0, 0].set_title("Image", fontsize=22)
ax[0, 1].set_title("Original", fontsize=22)
ax[0, 2].set_title("Upsampled Features", fontsize=22)
ax[0, 1].imshow(lr_feats_pca[0, :3].permute(1, 2, 0).detach().cpu())
ax[0, 0].set_ylabel("PCA Components 1-3", fontsize=22)
ax[0, 2].imshow(hr_feats_pca[0, :3].permute(1, 2, 0).detach().cpu())
ax[1, 1].imshow(lr_feats_pca[0, 3:6].permute(1, 2, 0).detach().cpu())
ax[1, 0].set_ylabel("PCA Components 4-6", fontsize=22)
ax[1, 2].imshow(hr_feats_pca[0, 3:6].permute(1, 2, 0).detach().cpu())
ax[2, 1].imshow(lr_feats_pca[0, 6:9].permute(1, 2, 0).detach().cpu())
ax[2, 0].set_ylabel("PCA Components 7-9", fontsize=22)
ax[2, 2].imshow(hr_feats_pca[0, 6:9].permute(1, 2, 0).detach().cpu())
remove_axes(ax)
plt.tight_layout()
plt.close(fig) # Close plt to avoid additional empty plots
return fig
def download_image(url, save_path):
response = requests.get(url)
with open(save_path, 'wb') as file:
file.write(response.content)
base_url = "https://marhamilresearch4.blob.core.windows.net/feature-upsampling-public/sample_images/"
sample_images_urls = {
"skate.jpg": base_url + "skate.jpg",
"car.jpg": base_url + "car.jpg",
"plant.png": base_url + "plant.png",
}
sample_images_dir = "/tmp/sample_images"
# Ensure the directory for sample images exists
os.makedirs(sample_images_dir, exist_ok=True)
# Download each sample image
for filename, url in sample_images_urls.items():
save_path = os.path.join(sample_images_dir, filename)
# Download the image if it doesn't already exist
if not os.path.exists(save_path):
print(f"Downloading {filename}...")
download_image(url, save_path)
else:
print(f"{filename} already exists. Skipping download.")
os.environ['TORCH_HOME'] = '/tmp/.cache'
os.environ['GRADIO_EXAMPLES_CACHE'] = '/tmp/gradio_cache'
csv.field_size_limit(100000000)
options = ['dino16', 'vit', 'dinov2', 'clip', 'resnet50']
image_input = gr.Image(label="Choose an image to featurize",
height=480,
type="pil",
image_mode='RGB',
sources=['upload', 'webcam', 'clipboard']
)
model_option = gr.Radio(options, value="dino16",
label='Choose a backbone to upsample')
models = {o: torch.hub.load("mhamilton723/FeatUp", o) for o in options}
@spaces.GPU
def upsample_features(image, model_option):
# Find all CUDA directories that match /usr/local/cuda*
cuda_dirs = glob.glob('/usr/local/cuda*')
if not cuda_dirs:
raise EnvironmentError('No CUDA installation found. Please install CUDA or set CUDA_HOME manually.')
# Assume the highest version of CUDA is the one to use
cuda_dirs.sort()
cuda_home = cuda_dirs[-1]
# Set the CUDA_HOME environment variable
os.environ['CUDA_HOME'] = cuda_home
os.environ['PATH'] = os.environ['CUDA_HOME'] + '/bin:' + os.environ['PATH']
os.environ['LD_LIBRARY_PATH'] = os.environ['CUDA_HOME'] + '/lib64:' + os.environ.get('LD_LIBRARY_PATH', '')
# Install the required package from GitHub
subprocess.check_call(["pip", "install", "git+https://github.com/mhamilton723/FeatUp"])
from featup.util import norm, unnorm
# Image preprocessing
input_size = 224
transform = T.Compose([
T.Resize(input_size),
T.CenterCrop((input_size, input_size)),
T.ToTensor(),
norm
])
image_tensor = transform(image).unsqueeze(0).cuda()
# Load the selected model
upsampler = models[model_option].cuda()
hr_feats = upsampler(image_tensor)
lr_feats = upsampler.model(image_tensor)
upsampler.cpu()
return plot_feats(unnorm(image_tensor)[0], lr_feats[0], hr_feats[0])
demo = gr.Interface(fn=upsample_features,
inputs=[image_input, model_option],
outputs="plot",
title="Feature Upsampling Demo",
description="This demo allows you to upsample features of an image using selected models.",
examples=[
["/tmp/sample_images/skate.jpg", "dino16"],
["/tmp/sample_images/car.jpg", "dinov2"],
["/tmp/sample_images/plant.png", "dino16"],
]
)
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|